* Increase precision of delta_phase term by 1 bit.
* This improves accuracy of 1st order Taylor variant to less than 1.0 lsb peak deviation. * Add comments.
This commit is contained in:
parent
12b896c2df
commit
9f4bb7f9b0
|
@ -57,15 +57,15 @@ architecture rtl of sincos_gen is
|
|||
constant table_width: integer := data_bits;
|
||||
|
||||
-- Number of bits in signed delta phase term.
|
||||
constant dphase_bits: integer := phase_bits - table_addrbits - 1;
|
||||
constant dphase_bits: integer := phase_bits - table_addrbits;
|
||||
|
||||
-- Scaling for 1st order (final) Taylor correction.
|
||||
constant accum1_bits: integer := table_width + phase_bits - 1;
|
||||
constant round_const1: unsigned(phase_bits-3 downto 0) := (others => '1');
|
||||
constant accum1_bits: integer := table_width + phase_bits;
|
||||
constant round_const1: unsigned(phase_bits-2 downto 0) := (others => '1');
|
||||
|
||||
-- Scaling for 2nd order Taylor correction.
|
||||
constant accum2_bits: integer := table_width + phase_bits;
|
||||
constant round_const2: unsigned(phase_bits-2 downto 0) := "0" & round_const1;
|
||||
constant accum2_bits: integer := table_width + phase_bits + 1;
|
||||
constant round_const2: unsigned(phase_bits-1 downto 0) := "0" & round_const1;
|
||||
|
||||
-- Lookup table type.
|
||||
type table_type is array(0 to table_size-1) of
|
||||
|
@ -91,12 +91,12 @@ architecture rtl of sincos_gen is
|
|||
|
||||
-- Internal registers.
|
||||
signal r1_quadrant: unsigned(1 downto 0);
|
||||
signal r1_rphase: signed(dphase_bits-2 downto 0);
|
||||
signal r1_rphase: signed(dphase_bits-3 downto 0);
|
||||
signal r1_dphase: signed(dphase_bits-1 downto 0);
|
||||
signal r1_sin_addr: unsigned(table_addrbits-1 downto 0);
|
||||
signal r1_cos_addr: unsigned(table_addrbits-1 downto 0);
|
||||
signal r2_quadrant: unsigned(1 downto 0);
|
||||
signal r2_rphase: signed(dphase_bits-2 downto 0);
|
||||
signal r2_rphase: signed(dphase_bits-3 downto 0);
|
||||
signal r2_dphase: signed(dphase_bits-1 downto 0);
|
||||
signal r2_sin_data: unsigned(table_width-1 downto 0);
|
||||
signal r2_cos_data: unsigned(table_width-1 downto 0);
|
||||
|
@ -152,7 +152,7 @@ begin
|
|||
|
||||
-- Synchronous process.
|
||||
process (clk) is
|
||||
variable v1_rphase: signed(dphase_bits-2 downto 0);
|
||||
variable v1_rphase: signed(dphase_bits-3 downto 0);
|
||||
variable v3_dphase: signed(dphase_bits-1 downto 0);
|
||||
variable v9_sin_val: signed(data_bits-1 downto 0);
|
||||
variable v9_cos_val: signed(data_bits-1 downto 0);
|
||||
|
@ -163,20 +163,73 @@ begin
|
|||
|
||||
if clk_en = '1' then
|
||||
|
||||
--
|
||||
-- "in_phase" is an unsigned integer of width (phase_bits).
|
||||
-- We split it into three fields
|
||||
--
|
||||
-- MSB LSB
|
||||
-- (2 bits) (table_addrbits) (remaining bits)
|
||||
-- -------------------------------------------
|
||||
-- | . . | . . . . . | . . . . . . |
|
||||
-- -------------------------------------------
|
||||
-- quadrant table index phase remainder
|
||||
--
|
||||
-- The two most significant bits are the quadrant index
|
||||
-- (0 .. 3). We keep this index for later.
|
||||
-- Sine and cosine are calculated for the first quadrant,
|
||||
-- then modified afterwards to step to the selected quadrant.
|
||||
--
|
||||
-- The following (table_addrbits) bits form an index into
|
||||
-- the lookup table. Each entry in the lookup table represents
|
||||
-- the ideal value for the midpoint of the corresponding
|
||||
-- range of phase values.
|
||||
--
|
||||
-- The remaining least signifcant bits form the phase
|
||||
-- remainder with respect to the lookup index.
|
||||
-- If the phase remainder is "10000...", the lookup table
|
||||
-- value is exactly right. Smaller than "10000..." requires
|
||||
-- negative phase adjustment, larger than "1000..." requires
|
||||
-- positive phase adjustment. The phase remainder can thus
|
||||
-- be interpreted as a signed integer with the sign bit
|
||||
-- inverted.
|
||||
--
|
||||
-- The phase remainder must be converted to radians
|
||||
-- for use as Taylor correction coeffcient. This conversion
|
||||
-- requires multiplication by Pi.
|
||||
--
|
||||
-- We use the following approximation of Pi with
|
||||
-- 10 fractional bits:
|
||||
-- Pi =~ 11.0010010001B
|
||||
--
|
||||
-- Multiplication by this factor is implemented through
|
||||
-- shifting and adding:
|
||||
-- x * Pi =~ (x << 1) + x + (x >> 3) + (x >> 6) + (x >> 10)
|
||||
--
|
||||
-- which can be decomposed as follows:
|
||||
-- t1 = (x << 1) + (x >> 3)
|
||||
-- t2 = t + (t >> 7)
|
||||
-- x * Pi =~ x + t
|
||||
--
|
||||
|
||||
-- Stage 1
|
||||
|
||||
-- Keep quadrant for later use.
|
||||
r1_quadrant <= in_phase(phase_bits-1 downto phase_bits-2);
|
||||
|
||||
-- Extract phase remainder as signed number.
|
||||
v1_rphase(dphase_bits-2) := not in_phase(dphase_bits-2);
|
||||
v1_rphase(dphase_bits-3 downto 0) := signed(in_phase(dphase_bits-3 downto 0));
|
||||
-- Extract phase remainder as signed number
|
||||
-- (by simply inverting the sign bit).
|
||||
v1_rphase(dphase_bits-3) := not in_phase(dphase_bits-3);
|
||||
v1_rphase(dphase_bits-4 downto 0) := signed(in_phase(dphase_bits-4 downto 0));
|
||||
|
||||
-- Keep phase remainder and work on multiplication by Pi/2.
|
||||
-- Keep phase remainder for later use.
|
||||
r1_rphase <= v1_rphase;
|
||||
r1_dphase <= resize(v1_rphase, dphase_bits) +
|
||||
resize(v1_rphase(dphase_bits-2 downto 4), dphase_bits) +
|
||||
signed("0" & v1_rphase(3 downto 3));
|
||||
|
||||
-- Multiply phase remainder by Pi, step 1.
|
||||
-- t1 = (rphase << 1) + (rphase >> 3)
|
||||
-- (apply rounding constant for truncation due to shift)
|
||||
r1_dphase <= resize(v1_rphase & "0", dphase_bits) +
|
||||
resize(v1_rphase(dphase_bits-3 downto 3), dphase_bits) +
|
||||
signed("0" & v1_rphase(2 downto 2));
|
||||
|
||||
-- Extract table index for sin and cos.
|
||||
r1_sin_addr <= in_phase(phase_bits-3 downto
|
||||
|
@ -186,11 +239,13 @@ begin
|
|||
|
||||
-- Stage 2
|
||||
|
||||
-- Keep quadrant for later use.
|
||||
-- Keep quadrant and phase remainder for later use.
|
||||
r2_quadrant <= r1_quadrant;
|
||||
|
||||
-- Keep phase remainder and work on multiplication by Pi/2.
|
||||
r2_rphase <= r1_rphase;
|
||||
|
||||
-- Multiply phase remainder by Pi, step 2.
|
||||
-- t2 = t1 + (t1 >> 7)
|
||||
-- (apply rounding constant for truncation due to shift)
|
||||
r2_dphase <= r1_dphase +
|
||||
resize(r1_dphase(dphase_bits-1 downto 7), dphase_bits) +
|
||||
signed("0" & r1_dphase(6 downto 6));
|
||||
|
@ -201,9 +256,10 @@ begin
|
|||
|
||||
-- Stage 3
|
||||
|
||||
-- Finalize multiplication of phase remainder by Pi/2.
|
||||
-- Multiply phase remainder by Pi, final step.
|
||||
-- dphase = t2 + rphase
|
||||
v3_dphase := r2_dphase +
|
||||
resize(r2_rphase(dphase_bits-2 downto 1), dphase_bits);
|
||||
resize(r2_rphase, dphase_bits);
|
||||
|
||||
if taylor_order = 2 then
|
||||
-- Handle 2nd order Taylor correction.
|
||||
|
@ -267,9 +323,9 @@ begin
|
|||
r6_cos_data <= r5_cos_data;
|
||||
|
||||
-- Prepare multiplication for 1st order Taylor correction.
|
||||
r6_sinm1_a <= r5_sinm2_p(accum2_bits-1 downto phase_bits-1);
|
||||
r6_sinm1_a <= r5_sinm2_p(accum2_bits-1 downto phase_bits);
|
||||
r6_sinm1_b <= r5_dphase;
|
||||
r6_cosm1_a <= r5_cosm2_p(accum2_bits-1 downto phase_bits-1);
|
||||
r6_cosm1_a <= r5_cosm2_p(accum2_bits-1 downto phase_bits);
|
||||
r6_cosm1_b <= r5_dphase;
|
||||
|
||||
else
|
||||
|
@ -322,8 +378,8 @@ begin
|
|||
-- Stage 9
|
||||
|
||||
-- Extract relevant bits of answer.
|
||||
v9_sin_val := r8_sinm1_p(accum1_bits-1 downto phase_bits-1);
|
||||
v9_cos_val := r8_cosm1_p(accum1_bits-1 downto phase_bits-1);
|
||||
v9_sin_val := r8_sinm1_p(accum1_bits-1 downto phase_bits);
|
||||
v9_cos_val := r8_cosm1_p(accum1_bits-1 downto phase_bits);
|
||||
|
||||
-- Choose between sin/cos based on quadrant.
|
||||
if r8_quadrant(0) = '0' then
|
||||
|
|
Loading…
Reference in New Issue