1790 lines
66 KiB
Python
1790 lines
66 KiB
Python
"""
|
|
Algorithm for finding a maximum weight matching in general graphs.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import sys
|
|
import math
|
|
import collections
|
|
from collections.abc import Sequence
|
|
from typing import NamedTuple, Optional
|
|
|
|
|
|
def maximum_weight_matching(
|
|
edges: Sequence[tuple[int, int, int|float]]
|
|
) -> list[tuple[int, int]]:
|
|
"""Compute a maximum-weighted matching in the general undirected weighted
|
|
graph given by "edges".
|
|
|
|
The graph is specified as a list of edges, each edge specified as a tuple
|
|
of its two vertices and the edge weight.
|
|
There may be at most one edge between any pair of vertices.
|
|
No vertex may have an edge to itself.
|
|
The graph may be non-connected (i.e. contain multiple components).
|
|
|
|
Vertices are indexed by consecutive, non-negative integers, such that
|
|
the first vertex has index 0 and the last vertex has index (n-1).
|
|
Edge weights may be integers or floating point numbers.
|
|
|
|
Isolated vertices (not incident to any edge) are allowed, but not
|
|
recommended since such vertices consume time and memory but have
|
|
no effect on the maximum-weight matching.
|
|
Edges with negative weight are ignored.
|
|
|
|
This function takes time O(n**3), where "n" is the number of vertices.
|
|
This function uses O(n + m) memory, where "m" is the number of edges.
|
|
|
|
Parameters:
|
|
edges: List of edges, each edge specified as a tuple "(x, y, w)"
|
|
where "x" and "y" are vertex indices and "w" is the edge weight.
|
|
|
|
Returns:
|
|
List of pairs of matched vertex indices.
|
|
This is a subset of the edges in the graph.
|
|
It contains a tuple "(x, y)" if vertex "x" is matched to vertex "y".
|
|
|
|
Raises:
|
|
ValueError: If the input does not satisfy the constraints.
|
|
TypeError: If the input contains invalid data types.
|
|
MatchingError: If the matching algorithm fails.
|
|
This can only happen if there is a bug in the algorithm.
|
|
"""
|
|
|
|
# Check that the input meets all constraints.
|
|
_check_input_types(edges)
|
|
_check_input_graph(edges)
|
|
|
|
# Remove edges with negative weight.
|
|
edges = _remove_negative_weight_edges(edges)
|
|
|
|
# Special case for empty graphs.
|
|
if not edges:
|
|
return []
|
|
|
|
# Initialize graph representation.
|
|
graph = _GraphInfo(edges)
|
|
|
|
# Initialize the matching algorithm.
|
|
ctx = _MatchingContext(graph)
|
|
|
|
# Improve the solution until no further improvement is possible.
|
|
#
|
|
# Each successful pass through this loop increases the number
|
|
# of matched edges by 1.
|
|
#
|
|
# This loop runs through at most (n/2 + 1) iterations.
|
|
# Each iteration takes time O(n**2).
|
|
while ctx.run_stage():
|
|
pass
|
|
|
|
# Extract the final solution.
|
|
pairs: list[tuple[int, int]] = [
|
|
(x, y) for (x, y, _w) in edges if ctx.vertex_mate[x] == y]
|
|
|
|
# Verify that the matching is optimal.
|
|
# This is just a safeguard; the verification will always pass unless
|
|
# there is a bug in the matching algorithm.
|
|
# Verification only works reliably for integer weights.
|
|
if graph.integer_weights:
|
|
_verify_optimum(ctx)
|
|
|
|
return pairs
|
|
|
|
|
|
def adjust_weights_for_maximum_cardinality_matching(
|
|
edges: Sequence[tuple[int, int, int|float]]
|
|
) -> Sequence[tuple[int, int, int|float]]:
|
|
"""Adjust edge weights such that the maximum-weight matching of
|
|
the adjusted graph is a maximum-cardinality matching, equal to
|
|
a matching in the original graph that has maximum weight out of all
|
|
matchings with maximum cardinality.
|
|
|
|
The graph is specified as a list of edges, each edge specified as a tuple
|
|
of its two vertices and the edge weight.
|
|
Edge weights may be integers or floating point numbers.
|
|
Negative edge weights are allowed.
|
|
|
|
This function increases all edge weights by an equal amount such that
|
|
the adjusted weights satisfy the following conditions:
|
|
- All edge weights are positive;
|
|
- The minimum edge weight is at least "n" times the difference between
|
|
maximum and minimum edge weight.
|
|
|
|
These conditions ensure that a maximum-cardinality matching will be found.
|
|
Proof: The weight of any non-maximum-cardinality matching can be increased
|
|
by matching an additional edge, even if the new edge has minimum edge
|
|
weight and causes all other matched edges to degrade from maximum to
|
|
minimum edge weight.
|
|
|
|
Since we are only considering maximum-cardinality matchings, increasing
|
|
all edge weights by an equal amount will not change the set of edges
|
|
that makes up the maximum-weight matching.
|
|
|
|
This function increases edge weights by an amount that is proportional
|
|
to the product of the unadjusted weight range and the number of vertices
|
|
in the graph. In case of a big graph with floating point weights, this
|
|
may introduce rounding errors in the weights.
|
|
|
|
This function takes time O(m), where "m" is the number of edges.
|
|
|
|
Parameters:
|
|
edges: List of edges, each edge specified as a tuple "(x, y, w)"
|
|
where "x" and "y" are vertex indices and "w" is the edge weight.
|
|
|
|
Returns:
|
|
List of edges with adjusted weights. If no adjustments are necessary,
|
|
the input list instance may be returned.
|
|
|
|
Raises:
|
|
ValueError: If the input does not satisfy the constraints.
|
|
TypeError: If the input contains invalid data types.
|
|
"""
|
|
|
|
_check_input_types(edges)
|
|
|
|
# Don't worry about empty graphs:
|
|
if not edges:
|
|
return edges
|
|
|
|
num_vertex = 1 + max(max(x, y) for (x, y, _w) in edges)
|
|
|
|
min_weight = min(w for (_x, _y, w) in edges)
|
|
max_weight = max(w for (_x, _y, w) in edges)
|
|
weight_range = max_weight - min_weight
|
|
|
|
# Do nothing if the weights already ensure a maximum-cardinality matching.
|
|
if min_weight > 0 and min_weight >= num_vertex * weight_range:
|
|
return edges
|
|
|
|
delta: int|float
|
|
if weight_range > 0:
|
|
# Increase weights to make minimum edge weight large enough
|
|
# to improve any non-maximum-cardinality matching.
|
|
delta = num_vertex * weight_range - min_weight
|
|
else:
|
|
# All weights are the same. Increase weights to make them positive.
|
|
delta = 1 - min_weight
|
|
|
|
assert delta >= 0
|
|
|
|
# Increase all edge weights by "delta".
|
|
return [(x, y, w + delta) for (x, y, w) in edges]
|
|
|
|
|
|
class MatchingError(Exception):
|
|
"""Raised when verification of the matching fails.
|
|
|
|
This can only happen if there is a bug in the algorithm.
|
|
"""
|
|
pass
|
|
|
|
|
|
def _check_input_types(edges: Sequence[tuple[int, int, int|float]]) -> None:
|
|
"""Check that the input consists of valid data types and valid
|
|
numerical ranges.
|
|
|
|
This function takes time O(m).
|
|
|
|
Parameters:
|
|
edges: List of edges, each edge specified as a tuple "(x, y, w)"
|
|
where "x" and "y" are edge indices and "w" is the edge weight.
|
|
|
|
Raises:
|
|
ValueError: If the input does not satisfy the constraints.
|
|
TypeError: If the input contains invalid data types.
|
|
"""
|
|
|
|
float_limit = sys.float_info.max / 4
|
|
|
|
if not isinstance(edges, list):
|
|
raise TypeError('"edges" must be a list')
|
|
|
|
for e in edges:
|
|
if (not isinstance(e, tuple)) or (len(e) != 3):
|
|
raise TypeError("Each edge must be specified as a 3-tuple")
|
|
|
|
(x, y, w) = e
|
|
|
|
if (not isinstance(x, int)) or (not isinstance(y, int)):
|
|
raise TypeError("Edge endpoints must be integers")
|
|
|
|
if (x < 0) or (y < 0):
|
|
raise ValueError("Edge endpoints must be non-negative integers")
|
|
|
|
if not isinstance(w, (int, float)):
|
|
raise TypeError(
|
|
"Edge weights must be integers or floating point numbers")
|
|
|
|
if isinstance(w, float):
|
|
if not math.isfinite(w):
|
|
raise ValueError("Edge weights must be finite numbers")
|
|
|
|
# Check that this edge weight will not cause our dual variable
|
|
# calculations to exceed the valid floating point range.
|
|
if w > float_limit:
|
|
raise ValueError("Floating point edge weights must be"
|
|
f" less than {float_limit:g}")
|
|
|
|
|
|
def _check_input_graph(edges: Sequence[tuple[int, int, int|float]]) -> None:
|
|
"""Check that the input is a valid graph, without any multi-edges and
|
|
without any self-edges.
|
|
|
|
This function takes time O(m * log(m)).
|
|
|
|
Parameters:
|
|
edges: List of edges, each edge specified as a tuple "(x, y, w)"
|
|
where "x" and "y" are edge indices and "w" is the edge weight.
|
|
|
|
Raises:
|
|
ValueError: If the input does not satisfy the constraints.
|
|
"""
|
|
|
|
# Check that the graph has no self-edges.
|
|
for (x, y, _w) in edges:
|
|
if x == y:
|
|
raise ValueError("Self-edges are not supported")
|
|
|
|
# Check that the graph does not have multi-edges.
|
|
# Using a set() would be more straightforward, but the runtime bounds
|
|
# of the Python set type are not clearly specified.
|
|
# Sorting provides guaranteed O(m * log(m)) run time.
|
|
edge_endpoints = [((x, y) if (x < y) else (y, x)) for (x, y, _w) in edges]
|
|
edge_endpoints.sort()
|
|
|
|
for i in range(len(edge_endpoints) - 1):
|
|
if edge_endpoints[i] == edge_endpoints[i+1]:
|
|
raise ValueError(f"Duplicate edge {edge_endpoints[i]}")
|
|
|
|
|
|
def _remove_negative_weight_edges(
|
|
edges: Sequence[tuple[int, int, int|float]]
|
|
) -> Sequence[tuple[int, int, int|float]]:
|
|
"""Remove edges with negative weight.
|
|
|
|
This does not change the solution of the maximum-weight matching problem,
|
|
but prevents complications in the algorithm.
|
|
"""
|
|
if any(e[2] < 0 for e in edges):
|
|
return [e for e in edges if e[2] >= 0]
|
|
else:
|
|
return edges
|
|
|
|
|
|
class _GraphInfo:
|
|
"""Representation of the input graph.
|
|
|
|
These data remain unchanged while the algorithm runs.
|
|
"""
|
|
|
|
def __init__(self, edges: Sequence[tuple[int, int, int|float]]) -> None:
|
|
"""Initialize the graph representation and prepare an adjacency list.
|
|
|
|
This function takes time O(n + m).
|
|
"""
|
|
|
|
# Vertices are indexed by integers in range 0 .. n-1.
|
|
# Edges are indexed by integers in range 0 .. m-1.
|
|
#
|
|
# Each edge is incident on two vertices.
|
|
# Each edge also has a weight.
|
|
#
|
|
# "edges[e] = (x, y, w)" where
|
|
# "e" is an edge index;
|
|
# "x" and "y" are vertex indices of the incident vertices;
|
|
# "w" is the edge weight.
|
|
#
|
|
# These data remain unchanged while the algorithm runs.
|
|
self.edges: Sequence[tuple[int, int, int|float]] = edges
|
|
|
|
# num_vertex = the number of vertices.
|
|
if edges:
|
|
self.num_vertex = 1 + max(max(x, y) for (x, y, _w) in edges)
|
|
else:
|
|
self.num_vertex = 0
|
|
|
|
# Each vertex is incident to zero or more edges.
|
|
#
|
|
# "adjacent_edges[x]" is the list of edge indices of edges incident
|
|
# to the vertex with index "x".
|
|
#
|
|
# These data remain unchanged while the algorithm runs.
|
|
self.adjacent_edges: list[list[int]] = [
|
|
[] for v in range(self.num_vertex)]
|
|
for (e, (x, y, _w)) in enumerate(edges):
|
|
self.adjacent_edges[x].append(e)
|
|
self.adjacent_edges[y].append(e)
|
|
|
|
# Determine whether _all_ weights are integers.
|
|
# In this case we can avoid floating point computations entirely.
|
|
self.integer_weights: bool = all(isinstance(w, int)
|
|
for (_x, _y, w) in edges)
|
|
|
|
|
|
# Each vertex may be labeled "S" (outer) or "T" (inner) or be unlabeled.
|
|
_LABEL_NONE = 0
|
|
_LABEL_S = 1
|
|
_LABEL_T = 2
|
|
|
|
|
|
class _Blossom:
|
|
"""Represents a blossom in a partially matched graph.
|
|
|
|
A blossom is an odd-length alternating cycle over sub-blossoms.
|
|
An alternating path consists of alternating matched and unmatched edges.
|
|
An alternating cycle is an alternating path that starts and ends in
|
|
the same sub-blossom.
|
|
|
|
A single vertex by itself is also a blossom: a "trivial blossom".
|
|
|
|
An instance of this class represents either a trivial blossom,
|
|
or a non-trivial blossom which consists of multiple sub-blossoms.
|
|
|
|
Blossoms are recursive structures: A non-trivial blossoms contains
|
|
sub-blossoms, which may themselves contain sub-blossoms etc.
|
|
|
|
Each blossom contains exactly one vertex that is not matched to another
|
|
vertex in the same blossom. This is the "base vertex" of the blossom.
|
|
"""
|
|
|
|
def __init__(self, base_vertex: int) -> None:
|
|
"""Initialize a new blossom."""
|
|
|
|
# If this is not a top-level blossom,
|
|
# "parent" is the blossom in which this blossom is a sub-blossom.
|
|
#
|
|
# If this is a top-level blossom,
|
|
# "parent = None".
|
|
self.parent: Optional[_NonTrivialBlossom] = None
|
|
|
|
# "base_vertex" is the vertex index of the base of the blossom.
|
|
# This is the unique vertex which is contained in the blossom
|
|
# but not matched to another vertex in the same blossom.
|
|
#
|
|
# For trivial blossoms, the base vertex is simply the only
|
|
# vertex in the blossom.
|
|
self.base_vertex: int = base_vertex
|
|
|
|
# A top-level blossom that are part of an alternating tree,
|
|
# has labels S or T. Unlabeled top-level blossoms are not (yet)
|
|
# part of any alternating tree.
|
|
self.label: int = _LABEL_NONE
|
|
|
|
# Labeled top-level blossoms keep track of the edge through which
|
|
# they are attached to an alternating tree.
|
|
#
|
|
# "tree_edge = (x, y)" if the blossom is attached to an alternating
|
|
# tree via edge "(x, y)" and vertex "y" is contained in the blossom.
|
|
#
|
|
# "tree_edge = None" if the blossom is the root of an alternating tree.
|
|
self.tree_edge: Optional[tuple[int, int]] = None
|
|
|
|
# For a top-level S-blossom,
|
|
# "best_edge" is the edge index of the least-slack edge to
|
|
# a different S-blossom, or -1 if no such edge has been found.
|
|
self.best_edge: int = -1
|
|
|
|
# "marker" is a temporary variable used to discover common
|
|
# ancestors in the blossom tree. It is normally False, except
|
|
# when used by "trace_alternating_paths()".
|
|
self.marker: bool = False
|
|
|
|
def vertices(self) -> list[int]:
|
|
"""Return a list of vertex indices contained in the blossom."""
|
|
return [self.base_vertex]
|
|
|
|
|
|
class _NonTrivialBlossom(_Blossom):
|
|
"""Represents a non-trivial blossom in a partially matched graph.
|
|
|
|
A non-trivial blossom is a blossom that contains multiple sub-blossoms
|
|
(at least 3 sub-blossoms, since all blossoms have odd length).
|
|
|
|
Non-trivial blossoms maintain a list of their sub-blossoms and the edges
|
|
between their subblossoms.
|
|
|
|
Unlike trivial blossoms, each non-trivial blossom is associated with
|
|
a variable in the dual LPP problem.
|
|
|
|
Non-trivial blossoms are created and destroyed by the matching algorithm.
|
|
This implies that not every odd-length alternating cycle is a blossom;
|
|
it only becomes a blossom through an explicit action of the algorithm.
|
|
An existing blossom may change when the matching is augmented along
|
|
a path that runs through the blossom.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
subblossoms: list[_Blossom],
|
|
edges: list[tuple[int, int]]
|
|
) -> None:
|
|
"""Initialize a new blossom."""
|
|
|
|
super().__init__(subblossoms[0].base_vertex)
|
|
|
|
# Sanity check.
|
|
n = len(subblossoms)
|
|
assert len(edges) == n
|
|
assert n >= 3
|
|
assert n % 2 == 1
|
|
|
|
# "subblossoms" is a list of the sub-blossoms of the blossom,
|
|
# ordered by their appearance in the alternating cycle.
|
|
#
|
|
# "subblossoms[0]" is the start and end of the alternating cycle.
|
|
# "subblossoms[0]" contains the base vertex of the blossom.
|
|
self.subblossoms: list[_Blossom] = subblossoms
|
|
|
|
# "edges" is a list of edges linking the sub-blossoms.
|
|
# Each edge is represented as an ordered pair "(x, y)" where "x"
|
|
# and "y" are vertex indices.
|
|
#
|
|
# "edges[0] = (x, y)" where vertex "x" in "subblossoms[0]" is
|
|
# adjacent to vertex "y" in "subblossoms[1]", etc.
|
|
self.edges: list[tuple[int, int]] = edges
|
|
|
|
# Every non-trivial blossom has a variable in the dual LPP.
|
|
#
|
|
# "dual_var" is the current value of the dual variable.
|
|
# New blossoms start with dual variable 0.
|
|
self.dual_var: int|float = 0
|
|
|
|
# For a non-trivial, top-level S-blossom,
|
|
# "best_edge_set" is a list of least-slack edges between this blossom
|
|
# and other S-blossoms.
|
|
self.best_edge_set: Optional[list[int]] = None
|
|
|
|
def vertices(self) -> list[int]:
|
|
"""Return a list of vertex indices contained in the blossom."""
|
|
|
|
# Use an explicit stack to avoid deep recursion.
|
|
stack: list[_NonTrivialBlossom] = [self]
|
|
nodes: list[int] = []
|
|
|
|
while stack:
|
|
b = stack.pop()
|
|
for sub in b.subblossoms:
|
|
if isinstance(sub, _NonTrivialBlossom):
|
|
stack.append(sub)
|
|
else:
|
|
nodes.append(sub.base_vertex)
|
|
|
|
return nodes
|
|
|
|
|
|
class _AlternatingPath(NamedTuple):
|
|
"""Represents a list of edges forming an alternating path or an
|
|
alternating cycle."""
|
|
edges: list[tuple[int, int]]
|
|
|
|
|
|
class _MatchingContext:
|
|
"""Holds all data used by the matching algorithm.
|
|
|
|
It contains a partial solution of the matching problem and several
|
|
auxiliary data structures.
|
|
"""
|
|
|
|
def __init__(self, graph: _GraphInfo) -> None:
|
|
"""Set up the initial state of the matching algorithm."""
|
|
|
|
num_vertex = graph.num_vertex
|
|
|
|
# Reference to the input graph.
|
|
# The graph does not change while the algorithm runs.
|
|
self.graph = graph
|
|
|
|
# Each vertex is either single (unmatched) or matched to
|
|
# another vertex.
|
|
#
|
|
# If vertex "x" is matched to vertex "y",
|
|
# "vertex_mate[x] == y" and "vertex_mate[y] == x".
|
|
#
|
|
# If vertex "x" is unmatched, "vertex_mate[x] == -1".
|
|
#
|
|
# Initially all vertices are unmatched.
|
|
self.vertex_mate: list[int] = num_vertex * [-1]
|
|
|
|
# Each vertex is associated with a trivial blossom.
|
|
# In addition, non-trivial blossoms may be created and destroyed
|
|
# during the course of the matching algorithm.
|
|
#
|
|
# "trivial_blossom[x]" is the trivial blossom that contains only
|
|
# vertex "x".
|
|
self.trivial_blossom: list[_Blossom] = [_Blossom(x)
|
|
for x in range(num_vertex)]
|
|
|
|
# Non-trivial blossoms may be created and destroyed during
|
|
# the course of the algorithm.
|
|
#
|
|
# Initially there are no non-trivial blossoms.
|
|
self.nontrivial_blossom: list[_NonTrivialBlossom] = []
|
|
|
|
# Every vertex is contained in exactly one top-level blossom
|
|
# (possibly the trivial blossom that contains just that vertex).
|
|
#
|
|
# "vertex_top_blossom[x]" is the top-level blossom that contains
|
|
# vertex "x".
|
|
#
|
|
# Initially all vertices are trivial top-level blossoms.
|
|
self.vertex_top_blossom: list[_Blossom] = self.trivial_blossom.copy()
|
|
|
|
# Every vertex has a variable in the dual LPP.
|
|
#
|
|
# "vertex_dual_2x[x]" is 2 times the dual variable of vertex "x".
|
|
# Multiplication by 2 ensures that the values are integers
|
|
# if all edge weights are integers.
|
|
#
|
|
# Vertex duals are initialized to half the maximum edge weight.
|
|
max_weight = max(w for (_x, _y, w) in graph.edges)
|
|
self.vertex_dual_2x: list[int|float] = num_vertex * [max_weight]
|
|
|
|
# For each T-vertex or unlabeled vertex "x",
|
|
# "vertex_best_edge[x]" is the edge index of the least-slack edge
|
|
# between "x" and any S-vertex, or -1 if no such edge has been found.
|
|
self.vertex_best_edge: list[int] = num_vertex * [-1]
|
|
|
|
# Queue of S-vertices to be scanned.
|
|
self.queue: collections.deque[int] = collections.deque()
|
|
|
|
def edge_slack_2x(self, e: int) -> int|float:
|
|
"""Return 2 times the slack of the edge with index "e".
|
|
|
|
The result is only valid for edges that are not between vertices
|
|
that belong to the same top-level blossom.
|
|
|
|
Multiplication by 2 ensures that the return value is an integer
|
|
if all edge weights are integers.
|
|
|
|
This function is called O(n**2) times per stage.
|
|
"""
|
|
(x, y, w) = self.graph.edges[e]
|
|
assert self.vertex_top_blossom[x] is not self.vertex_top_blossom[y]
|
|
return self.vertex_dual_2x[x] + self.vertex_dual_2x[y] - 2 * w
|
|
|
|
#
|
|
# Least-slack edge tracking:
|
|
#
|
|
# To calculate delta steps, the matching algorithm needs to find
|
|
# - the least-slack edge between any S-vertex and an unlabeled vertex;
|
|
# - the least-slack edge between any pair of top-level S-blossoms.
|
|
#
|
|
# For each unlabeled vertex and each T-vertex, we keep track of the
|
|
# least-slack edge to any S-vertex. Tracking for unlabeled vertices
|
|
# serves to provide the least-slack edge for the delta step.
|
|
# Tracking for T-vertices is done because such vertices can turn into
|
|
# unlabeled vertices if they are part of a T-blossom that gets expanded.
|
|
#
|
|
# For each top-level S-blossom, we keep track of the least-slack edge
|
|
# to any S-vertex not in the same blossom.
|
|
#
|
|
# Furthermore, for each top-level S-blossom, we keep a list of least-slack
|
|
# edges to other top-level S-blossoms. For any pair of top-level
|
|
# S-blossoms, the least-slack edge between them is contained in the edge
|
|
# list of at least one of the blossoms. An edge list may contain multiple
|
|
# edges to the same S-blossom. Such redundant edges are pruned during
|
|
# blossom merging to limit the number of tracked edges.
|
|
#
|
|
# Note: For a given vertex or blossom, the identity of the least-slack
|
|
# edge to any S-blossom remains unchanged during a delta step.
|
|
# Although the delta step changes edge slacks, it changes the slack
|
|
# of every edge to an S-vertex by the same amount. Therefore the edge
|
|
# that had least slack before the delta step, will still have least slack
|
|
# after the delta step.
|
|
#
|
|
|
|
def lset_reset(self) -> None:
|
|
"""Reset least-slack edge tracking.
|
|
|
|
This function takes time O(n).
|
|
"""
|
|
num_vertex = self.graph.num_vertex
|
|
|
|
for x in range(num_vertex):
|
|
self.vertex_best_edge[x] = -1
|
|
|
|
for blossom in self.trivial_blossom:
|
|
blossom.best_edge = -1
|
|
|
|
for blossom in self.nontrivial_blossom:
|
|
blossom.best_edge = -1
|
|
blossom.best_edge_set = None
|
|
|
|
def lset_add_vertex_edge(self, y: int, e: int, slack: int|float) -> None:
|
|
"""Add edge "e" from an S-vertex to unlabeled vertex or T-vertex "y".
|
|
|
|
This function takes time O(1) per call.
|
|
This function is called O(m) times per stage.
|
|
"""
|
|
best_edge = self.vertex_best_edge[y]
|
|
if best_edge == -1:
|
|
self.vertex_best_edge[y] = e
|
|
else:
|
|
best_slack = self.edge_slack_2x(best_edge)
|
|
if slack < best_slack:
|
|
self.vertex_best_edge[y] = e
|
|
|
|
def lset_get_best_vertex_edge(self) -> tuple[int, int|float]:
|
|
"""Return the index and slack of the least-slack edge between
|
|
any S-vertex and unlabeled vertex.
|
|
|
|
This function takes time O(n) per call.
|
|
This function takes total time O(n**2) per stage.
|
|
|
|
Returns:
|
|
Tuple (edge_index, slack_2x) if there is a least-slack edge,
|
|
or (-1, 0) if there is no suitable edge.
|
|
"""
|
|
best_index = -1
|
|
best_slack: int|float = 0
|
|
|
|
for x in range(self.graph.num_vertex):
|
|
if self.vertex_top_blossom[x].label == _LABEL_NONE:
|
|
e = self.vertex_best_edge[x]
|
|
if e != -1:
|
|
slack = self.edge_slack_2x(e)
|
|
if (best_index == -1) or (slack < best_slack):
|
|
best_index = e
|
|
best_slack = slack
|
|
|
|
return (best_index, best_slack)
|
|
|
|
@staticmethod
|
|
def lset_new_blossom(blossom: _Blossom) -> None:
|
|
"""Start tracking edges for a new S-blossom."""
|
|
assert blossom.best_edge == -1
|
|
if isinstance(blossom, _NonTrivialBlossom):
|
|
assert blossom.best_edge_set is None
|
|
blossom.best_edge_set = []
|
|
|
|
def lset_add_blossom_edge(
|
|
self,
|
|
blossom: _Blossom,
|
|
e: int,
|
|
slack: int|float
|
|
) -> None:
|
|
"""Add edge "e" between the specified S-blossom and another S-blossom.
|
|
|
|
This function takes time O(1) per call.
|
|
This function is called O(m) times per stage.
|
|
"""
|
|
# Track least-slack edge between this blossom and any other S-blossom.
|
|
if blossom.best_edge == -1:
|
|
blossom.best_edge = e
|
|
else:
|
|
best_slack = self.edge_slack_2x(blossom.best_edge)
|
|
if slack < best_slack:
|
|
blossom.best_edge = e
|
|
|
|
# Regardless of whether this edge is currently the least-slack edge,
|
|
# this edge may later become the least-slack edge if other edges
|
|
# become unavailable when S-blossoms are merged.
|
|
#
|
|
# We therefore add the edge to a list of potential future least-slack
|
|
# edges for this blossom. We do this only for non-trivial blossoms.
|
|
if isinstance(blossom, _NonTrivialBlossom):
|
|
assert blossom.best_edge_set is not None
|
|
blossom.best_edge_set.append(e)
|
|
|
|
def lset_merge_blossoms(self, blossom: _NonTrivialBlossom) -> None:
|
|
"""Update least-slack edge tracking after merging sub-blossoms
|
|
into a new S-blossom.
|
|
|
|
This function takes total time O(n**2) per stage.
|
|
"""
|
|
num_vertex = self.graph.num_vertex
|
|
|
|
# Calculate the set of least-slack edges to other S-blossoms.
|
|
# We basically merge the edge lists from all sub-blossoms, but reject
|
|
# edges that are internal to this blossom, and trim the set such that
|
|
# there is at most one edge to each external S-blossom.
|
|
#
|
|
# Sub-blossoms that were formerly labeled T can be ignored; their
|
|
# vertices are in the queue and will discover neighbouring S-blossoms
|
|
# via the edge scan process.
|
|
#
|
|
# Build a temporary array holding the least-slack edge index to
|
|
# each top-level S-blossom. This array is indexed by the base vertex
|
|
# of the blossoms.
|
|
best_edge_to_blossom: list[int] = num_vertex * [-1]
|
|
zero_slack: int|float = 0
|
|
best_slack_to_blossom: list[int|float] = num_vertex * [zero_slack]
|
|
|
|
# And find the overall least-slack edge to any other S-blossom.
|
|
best_edge = -1
|
|
best_slack: int|float = 0
|
|
|
|
# Add the least-slack edges of every S-sub-blossom.
|
|
for sub in blossom.subblossoms:
|
|
|
|
if sub.label != _LABEL_S:
|
|
continue
|
|
|
|
if isinstance(sub, _NonTrivialBlossom):
|
|
# Pull the edge list from the sub-blossom.
|
|
assert sub.best_edge_set is not None
|
|
sub_edge_set = sub.best_edge_set
|
|
# Delete the edge list from the sub-blossom.
|
|
sub.best_edge_set = None
|
|
else:
|
|
# Trivial blossoms don't have a list of least-slack edges,
|
|
# so we just look at all adjacent edges. This happens at most
|
|
# once per vertex per stage.
|
|
# It adds up to O(m) time per stage.
|
|
sub_edge_set = self.graph.adjacent_edges[sub.base_vertex]
|
|
|
|
# Add edges to the temporary array.
|
|
for e in sub_edge_set:
|
|
(x, y, _w) = self.graph.edges[e]
|
|
bx = self.vertex_top_blossom[x]
|
|
by = self.vertex_top_blossom[y]
|
|
assert (bx is blossom) or (by is blossom)
|
|
|
|
# Reject internal edges in this blossom.
|
|
if bx is by:
|
|
continue
|
|
|
|
# Set bx = blossom at the other end of this edge.
|
|
bx = by if (bx is blossom) else bx
|
|
|
|
# Reject edges that don't link to an S-blossom.
|
|
if bx.label != _LABEL_S:
|
|
continue
|
|
|
|
# Keep only the least-slack edge to "bx".
|
|
slack = self.edge_slack_2x(e)
|
|
bx_base = bx.base_vertex
|
|
if ((best_edge_to_blossom[bx_base] == -1)
|
|
or (slack < best_slack_to_blossom[bx_base])):
|
|
best_edge_to_blossom[bx_base] = e
|
|
best_slack_to_blossom[bx_base] = slack
|
|
|
|
# Update the overall least-slack edge to any S-blossom.
|
|
if (best_edge == -1) or (slack < best_slack):
|
|
best_edge = e
|
|
best_slack = slack
|
|
|
|
# Extract a compact list of least-slack edge indices.
|
|
# We can not keep the temporary array because that would blow up
|
|
# memory use to O(n**2).
|
|
best_edge_set = [e for e in best_edge_to_blossom if e != -1]
|
|
blossom.best_edge_set = best_edge_set
|
|
|
|
# Keep the overall least-slack edge.
|
|
blossom.best_edge = best_edge
|
|
|
|
def lset_get_best_blossom_edge(self) -> tuple[int, int|float]:
|
|
"""Return the index and slack of the least-slack edge between
|
|
any pair of top-level S-blossoms.
|
|
|
|
This function takes time O(n) per call.
|
|
This function takes total time O(n**2) per stage.
|
|
|
|
Returns:
|
|
Tuple (edge_index, slack_2x) if there is a least-slack edge,
|
|
or (-1, 0) if there is no suitable edge.
|
|
"""
|
|
best_index = -1
|
|
best_slack: int|float = 0
|
|
|
|
for blossom in self.trivial_blossom + self.nontrivial_blossom:
|
|
if (blossom.label == _LABEL_S) and (blossom.parent is None):
|
|
e = blossom.best_edge
|
|
if e != -1:
|
|
slack = self.edge_slack_2x(e)
|
|
if (best_index == -1) or (slack < best_slack):
|
|
best_index = e
|
|
best_slack = slack
|
|
|
|
return (best_index, best_slack)
|
|
|
|
#
|
|
# General support routines:
|
|
#
|
|
|
|
def reset_stage(self) -> None:
|
|
"""Reset data which are only valid during a stage.
|
|
|
|
Marks all blossoms as unlabeled, clears the queue,
|
|
and resets tracking of least-slack edges.
|
|
"""
|
|
|
|
# Remove blossom labels.
|
|
for blossom in self.trivial_blossom + self.nontrivial_blossom:
|
|
blossom.label = _LABEL_NONE
|
|
blossom.tree_edge = None
|
|
|
|
# Clear the queue.
|
|
self.queue.clear()
|
|
|
|
# Reset least-slack edge tracking.
|
|
self.lset_reset()
|
|
|
|
def trace_alternating_paths(self, x: int, y: int) -> _AlternatingPath:
|
|
"""Trace back through the alternating trees from vertices "x" and "y".
|
|
|
|
If both vertices are part of the same alternating tree, this function
|
|
discovers a new blossom. In this case it returns an alternating path
|
|
through the blossom that starts and ends in the same sub-blossom.
|
|
|
|
If the vertices are part of different alternating trees, this function
|
|
discovers an augmenting path. In this case it returns an alternating
|
|
path that starts and ends in an unmatched vertex.
|
|
|
|
This function takes time O(k) to discover a blossom, where "k" is the
|
|
number of sub-blossoms, or time O(n) to discover an augmenting path.
|
|
|
|
Returns:
|
|
Alternating path as an ordered list of edges between top-level
|
|
blossoms.
|
|
"""
|
|
|
|
marked_blossoms: list[_Blossom] = []
|
|
|
|
# "xedges" is a list of edges used while tracing from "x".
|
|
# "yedges" is a list of edges used while tracing from "y".
|
|
# Pre-load the edge (x, y) on both lists.
|
|
xedges: list[tuple[int, int]] = [(x, y)]
|
|
yedges: list[tuple[int, int]] = [(y, x)]
|
|
|
|
# "first_common" is the first common ancestor of "x" and "y"
|
|
# in the alternating tree, or None if there is no common ancestor.
|
|
first_common: Optional[_Blossom] = None
|
|
|
|
# Alternate between tracing the path from "x" and the path from "y".
|
|
# This ensures that the search time is bounded by the size of the
|
|
# newly found blossom.
|
|
while x != -1 or y != -1:
|
|
|
|
# Check if we found a common ancestor.
|
|
bx = self.vertex_top_blossom[x]
|
|
if bx.marker:
|
|
first_common = bx
|
|
break
|
|
|
|
# Mark blossom as a potential common ancestor.
|
|
bx.marker = True
|
|
marked_blossoms.append(bx)
|
|
|
|
# Track back through the link in the alternating tree.
|
|
if bx.tree_edge is None:
|
|
# Reached the root of this alternating tree.
|
|
x = -1
|
|
else:
|
|
xedges.append(bx.tree_edge)
|
|
x = bx.tree_edge[0]
|
|
|
|
# Swap "x" and "y" to alternate between paths.
|
|
if y != -1:
|
|
(x, y) = (y, x)
|
|
(xedges, yedges) = (yedges, xedges)
|
|
|
|
# Remove all markers we placed.
|
|
for b in marked_blossoms:
|
|
b.marker = False
|
|
|
|
# If we found a common ancestor, trim the paths so they end there.
|
|
if first_common is not None:
|
|
assert self.vertex_top_blossom[xedges[-1][0]] is first_common
|
|
while self.vertex_top_blossom[yedges[-1][0]] is not first_common:
|
|
yedges.pop()
|
|
|
|
# Fuse the two paths.
|
|
# Flip the order of one path, and flip the edge tuples in the other
|
|
# path to obtain a continuous path with correctly ordered edge tuples.
|
|
# Skip the duplicate edge in one of the paths.
|
|
path_edges = xedges[::-1] + [(y, x) for (x, y) in yedges[1:]]
|
|
|
|
# Any S-to-S alternating path must have odd length.
|
|
assert len(path_edges) % 2 == 1
|
|
|
|
return _AlternatingPath(path_edges)
|
|
|
|
#
|
|
# Merge and expand blossoms:
|
|
#
|
|
|
|
def make_blossom(self, path: _AlternatingPath) -> None:
|
|
"""Create a new blossom from an alternating cycle.
|
|
|
|
Assign label S to the new blossom.
|
|
Relabel all T-sub-blossoms as S and add their vertices to the queue.
|
|
|
|
This function takes total time O(n**2) per stage.
|
|
"""
|
|
|
|
# Check that the path is odd-length.
|
|
assert len(path.edges) % 2 == 1
|
|
assert len(path.edges) >= 3
|
|
|
|
# Construct the list of sub-blossoms (current top-level blossoms).
|
|
subblossoms = [self.vertex_top_blossom[x] for (x, y) in path.edges]
|
|
|
|
# Check that the path is cyclic.
|
|
# Note the path may not start and end with the same _vertex_,
|
|
# but it must start and end in the same _blossom_.
|
|
subblossoms_next = [self.vertex_top_blossom[y]
|
|
for (x, y) in path.edges]
|
|
assert subblossoms[0] == subblossoms_next[-1]
|
|
assert subblossoms[1:] == subblossoms_next[:-1]
|
|
|
|
# Create the new blossom object.
|
|
blossom = _NonTrivialBlossom(subblossoms, path.edges)
|
|
|
|
# Insert into the blossom array.
|
|
self.nontrivial_blossom.append(blossom)
|
|
|
|
# Link the subblossoms to the their new parent.
|
|
for sub in subblossoms:
|
|
sub.parent = blossom
|
|
|
|
# Update blossom-membership of all vertices in the new blossom.
|
|
for x in blossom.vertices():
|
|
self.vertex_top_blossom[x] = blossom
|
|
|
|
# Assign label S to the new blossom.
|
|
assert subblossoms[0].label == _LABEL_S
|
|
blossom.label = _LABEL_S
|
|
blossom.tree_edge = subblossoms[0].tree_edge
|
|
|
|
# Former T-vertices which are part of this blossom now become
|
|
# S-vertices. Add them to the queue.
|
|
for sub in subblossoms:
|
|
if sub.label == _LABEL_T:
|
|
self.queue.extend(sub.vertices())
|
|
|
|
# Merge least-slack edges for the S-sub-blossoms.
|
|
self.lset_merge_blossoms(blossom)
|
|
|
|
@staticmethod
|
|
def find_path_through_blossom(
|
|
blossom: _NonTrivialBlossom,
|
|
sub: _Blossom
|
|
) -> tuple[list[_Blossom], list[tuple[int, int]]]:
|
|
"""Construct a path through the specified blossom,
|
|
from sub-blossom "sub" to the base of the blossom.
|
|
|
|
Return:
|
|
Tuple (nodes, edges).
|
|
"""
|
|
|
|
# Walk around the blossom from "sub" to its base.
|
|
p = blossom.subblossoms.index(sub)
|
|
if p % 2 == 0:
|
|
# Walk backwards around the blossom.
|
|
# Flip edges from (i,j) to (j,i) to make them fit
|
|
# in the path from "sub" to base.
|
|
nodes = blossom.subblossoms[p::-1]
|
|
edges = [(j, i) for (i, j) in blossom.edges[:p][::-1]]
|
|
else:
|
|
# Walk forward around the blossom.
|
|
nodes = blossom.subblossoms[p:] + blossom.subblossoms[0:1]
|
|
edges = blossom.edges[p:]
|
|
|
|
return (nodes, edges)
|
|
|
|
def expand_t_blossom(self, blossom: _NonTrivialBlossom) -> None:
|
|
"""Expand the specified T-blossom.
|
|
|
|
This function takes time O(n).
|
|
"""
|
|
|
|
assert blossom.parent is None
|
|
assert blossom.label == _LABEL_T
|
|
|
|
# Convert sub-blossoms into top-level blossoms.
|
|
for sub in blossom.subblossoms:
|
|
assert sub.label == _LABEL_NONE
|
|
sub.parent = None
|
|
if isinstance(sub, _NonTrivialBlossom):
|
|
for x in sub.vertices():
|
|
self.vertex_top_blossom[x] = sub
|
|
else:
|
|
self.vertex_top_blossom[sub.base_vertex] = sub
|
|
|
|
# The expanding blossom was part of an alternating tree, linked to
|
|
# a parent node in the tree via one of its subblossoms, and linked to
|
|
# a child node of the tree via the base vertex.
|
|
# We must reconstruct this part of the alternating tree, which will
|
|
# now run via sub-blossoms of the expanded blossom.
|
|
|
|
# Find the sub-blossom that is attached to the parent node in
|
|
# the alternating tree.
|
|
assert blossom.tree_edge is not None
|
|
(x, y) = blossom.tree_edge
|
|
sub = self.vertex_top_blossom[y]
|
|
|
|
# Assign label T to that sub-blossom.
|
|
sub.label = _LABEL_T
|
|
sub.tree_edge = blossom.tree_edge
|
|
|
|
# Walk through the expanded blossom from "sub" to the base vertex.
|
|
# Assign alternating S and T labels to the sub-blossoms and attach
|
|
# them to the alternating tree.
|
|
(path_nodes, path_edges) = self.find_path_through_blossom(blossom,
|
|
sub)
|
|
|
|
for p in range(0, len(path_edges), 2):
|
|
#
|
|
# (p) ==(y,x)== (p+1) ----- (p+2)
|
|
# T S T
|
|
#
|
|
# path_nodes[p] has already been labeled T.
|
|
# We now assign labels to path_nodes[p+1] and path_nodes[p+2].
|
|
|
|
# Assign label S to path_nodes[p+1].
|
|
(y, x) = path_edges[p]
|
|
self.assign_label_s(x)
|
|
|
|
# Assign label T to path_nodes[i+2] and attach it
|
|
# to path_nodes[p+1].
|
|
sub = path_nodes[p+2]
|
|
sub.label = _LABEL_T
|
|
sub.tree_edge = path_edges[p+1]
|
|
|
|
# Delete the expanded blossom.
|
|
self.nontrivial_blossom.remove(blossom)
|
|
|
|
def expand_unlabeled_blossom(self, blossom: _NonTrivialBlossom) -> None:
|
|
"""Expand the specified unlabeled blossom.
|
|
|
|
This function takes time O(n).
|
|
"""
|
|
|
|
assert blossom.parent is None
|
|
assert blossom.label == _LABEL_NONE
|
|
|
|
# Convert sub-blossoms into top-level blossoms.
|
|
for sub in blossom.subblossoms:
|
|
assert sub.label == _LABEL_NONE
|
|
sub.parent = None
|
|
|
|
if isinstance(sub, _NonTrivialBlossom):
|
|
for x in sub.vertices():
|
|
self.vertex_top_blossom[x] = sub
|
|
else:
|
|
self.vertex_top_blossom[sub.base_vertex] = sub
|
|
|
|
# Delete the expanded blossom.
|
|
self.nontrivial_blossom.remove(blossom)
|
|
|
|
#
|
|
# Augmenting:
|
|
#
|
|
|
|
def augment_blossom_rec(
|
|
self,
|
|
blossom: _NonTrivialBlossom,
|
|
sub: _Blossom,
|
|
stack: list[tuple[_NonTrivialBlossom, _Blossom]]
|
|
) -> None:
|
|
"""Augment along an alternating path through the specified blossom,
|
|
from sub-blossom "sub" to the base vertex of the blossom.
|
|
|
|
Modify the blossom to reflect that sub-blossom "sub" contains
|
|
the base vertex after augmenting.
|
|
|
|
Mark any sub-blossoms on the alternating path for recursive
|
|
augmentation, except for sub-blossom "sub" which has already been
|
|
augmented. Use the stack instead of making direct recursive calls.
|
|
"""
|
|
|
|
# Walk through the blossom from "sub" to the base vertex.
|
|
(path_nodes, path_edges) = self.find_path_through_blossom(blossom,
|
|
sub)
|
|
|
|
for p in range(0, len(path_edges), 2):
|
|
# Before augmentation:
|
|
# path_nodes[p] is matched to path_nodes[p+1]
|
|
#
|
|
# (p) ===== (p+1) ---(x,y)--- (p+2)
|
|
#
|
|
# After augmentation:
|
|
# path_nodes[p+1] matched to path_nodes[p+2] via edge (i,j)
|
|
#
|
|
# (p) ----- (p+1) ===(x,y)=== (p+2)
|
|
#
|
|
|
|
# Pull the edge (x, y) into the matching.
|
|
(x, y) = path_edges[p+1]
|
|
self.vertex_mate[x] = y
|
|
self.vertex_mate[y] = x
|
|
|
|
# Augment through the subblossoms touching the edge (x, y).
|
|
# Nothing needs to be done for trivial subblossoms.
|
|
bx = path_nodes[p+1]
|
|
if isinstance(bx, _NonTrivialBlossom):
|
|
stack.append((bx, self.trivial_blossom[x]))
|
|
|
|
by = path_nodes[p+2]
|
|
if isinstance(by, _NonTrivialBlossom):
|
|
stack.append((by, self.trivial_blossom[y]))
|
|
|
|
# Rotate the subblossom list so the new base ends up in position 0.
|
|
p = blossom.subblossoms.index(sub)
|
|
blossom.subblossoms = (
|
|
blossom.subblossoms[p:] + blossom.subblossoms[:p])
|
|
blossom.edges = blossom.edges[p:] + blossom.edges[:p]
|
|
|
|
# Update the base vertex.
|
|
# We can pull this from the sub-blossom where we started since
|
|
# its augmentation has already finished.
|
|
blossom.base_vertex = sub.base_vertex
|
|
|
|
def augment_blossom(
|
|
self,
|
|
blossom: _NonTrivialBlossom,
|
|
sub: _Blossom
|
|
) -> None:
|
|
"""Augment along an alternating path through the specified blossom,
|
|
from sub-blossom "sub" to the base vertex of the blossom.
|
|
|
|
Recursively augment any sub-blossoms on the alternating path.
|
|
|
|
This function takes time O(n).
|
|
"""
|
|
|
|
# Use an explicit stack to avoid deep recursion.
|
|
stack = [(blossom, sub)]
|
|
|
|
while stack:
|
|
(outer_blossom, sub) = stack.pop()
|
|
assert sub.parent is not None
|
|
blossom = sub.parent
|
|
|
|
if blossom != outer_blossom:
|
|
# Sub-blossom "sub" is an indirect (nested) child of
|
|
# the "outer_blossom" we are supposed to be augmenting.
|
|
#
|
|
# "blossom" is the direct parent of "sub".
|
|
# Let's first augment "blossom" from "sub" to its base vertex.
|
|
# Then continue by augmenting the parent of "blossom",
|
|
# from "blossom" to its base vertex, and so on until we
|
|
# get to the "outer_blossom".
|
|
#
|
|
# Set up to continue augmenting through the parent of
|
|
# "blossom".
|
|
stack.append((outer_blossom, blossom))
|
|
|
|
# Augment "blossom" from "sub" to the base vertex.
|
|
self.augment_blossom_rec(blossom, sub, stack)
|
|
|
|
def augment_matching(self, path: _AlternatingPath) -> None:
|
|
"""Augment the matching through the specified augmenting path.
|
|
|
|
This function takes time O(n).
|
|
"""
|
|
|
|
# Check that the augmenting path starts and ends in
|
|
# an unmatched vertex or a blossom with unmatched base.
|
|
assert len(path.edges) % 2 == 1
|
|
for x in (path.edges[0][0], path.edges[-1][1]):
|
|
b = self.vertex_top_blossom[x]
|
|
assert self.vertex_mate[b.base_vertex] == -1
|
|
|
|
# The augmenting path looks like this:
|
|
#
|
|
# (unmatched) ---- (B) ==== (B) ---- (B) ==== (B) ---- (unmatched)
|
|
#
|
|
# The first and last vertex (or blossom) of the path are unmatched
|
|
# (or have unmatched base vertex). After augmenting, those vertices
|
|
# will be matched. All matched edges on the path become unmatched,
|
|
# and unmatched edges become matched.
|
|
#
|
|
# This loop walks along the edges of this path that were not matched
|
|
# before augmenting.
|
|
for (x, y) in path.edges[0::2]:
|
|
|
|
# Augment the non-trivial blossoms on either side of this edge.
|
|
# No action is necessary for trivial blossoms.
|
|
bx = self.vertex_top_blossom[x]
|
|
if isinstance(bx, _NonTrivialBlossom):
|
|
self.augment_blossom(bx, self.trivial_blossom[x])
|
|
|
|
by = self.vertex_top_blossom[y]
|
|
if isinstance(by, _NonTrivialBlossom):
|
|
self.augment_blossom(by, self.trivial_blossom[y])
|
|
|
|
# Pull the edge into the matching.
|
|
self.vertex_mate[x] = y
|
|
self.vertex_mate[y] = x
|
|
|
|
#
|
|
# Labeling and alternating tree expansion:
|
|
#
|
|
|
|
def assign_label_s(self, x: int) -> None:
|
|
"""Assign label S to the unlabeled blossom that contains vertex "x".
|
|
|
|
If vertex "x" is matched, it is attached to the alternating tree
|
|
via its matched edge. If vertex "x" is unmatched, it becomes the root
|
|
of an alternating tree.
|
|
|
|
All vertices in the newly labeled blossom are added to the scan queue.
|
|
|
|
Precondition:
|
|
"x" is an unlabeled vertex, either unmatched or matched to
|
|
a T-vertex via a tight edge.
|
|
"""
|
|
|
|
# Assign label S to the blossom that contains vertex "x".
|
|
bx = self.vertex_top_blossom[x]
|
|
assert bx.label == _LABEL_NONE
|
|
bx.label = _LABEL_S
|
|
|
|
y = self.vertex_mate[x]
|
|
if y == -1:
|
|
# Vertex "x" is unmatched.
|
|
# It must be either a top-level vertex or the base vertex of
|
|
# a top-level blossom.
|
|
assert bx.base_vertex == x
|
|
|
|
# Mark the blossom as root of an alternating tree.
|
|
bx.tree_edge = None
|
|
|
|
else:
|
|
# Vertex "x" is matched to T-vertex "y".
|
|
by = self.vertex_top_blossom[y]
|
|
assert by.label == _LABEL_T
|
|
|
|
# Attach the blossom that contains "x" to the alternating tree.
|
|
bx.tree_edge = (y, x)
|
|
|
|
# Start least-slack edge tracking for the S-blossom.
|
|
self.lset_new_blossom(bx)
|
|
|
|
# Add all vertices inside the newly labeled S-blossom to the queue.
|
|
self.queue.extend(bx.vertices())
|
|
|
|
def assign_label_t(self, x: int, y: int) -> None:
|
|
"""Assign label T to the unlabeled blossom that contains vertex "y".
|
|
|
|
Attach it to the alternating tree via edge (x, y).
|
|
Then immediately assign label S to the mate of vertex "y".
|
|
|
|
Preconditions:
|
|
- "x" is an S-vertex.
|
|
- "y" is an unlabeled, matched vertex.
|
|
- There is a tight edge between vertices "x" and "y".
|
|
"""
|
|
assert self.vertex_top_blossom[x].label == _LABEL_S
|
|
|
|
by = self.vertex_top_blossom[y]
|
|
|
|
# Expand zero-dual blossoms before assigning label T.
|
|
while isinstance(by, _NonTrivialBlossom) and (by.dual_var == 0):
|
|
self.expand_unlabeled_blossom(by)
|
|
by = self.vertex_top_blossom[y]
|
|
|
|
# Assign label T to the unlabeled blossom.
|
|
assert by.label == _LABEL_NONE
|
|
by.label = _LABEL_T
|
|
by.tree_edge = (x, y)
|
|
|
|
# Assign label S to the blossom that is mated to the T-blossom.
|
|
z = self.vertex_mate[by.base_vertex]
|
|
assert z != -1
|
|
self.assign_label_s(z)
|
|
|
|
def add_s_to_s_edge(self, x: int, y: int) -> Optional[_AlternatingPath]:
|
|
"""Add the edge between S-vertices "x" and "y".
|
|
|
|
If the edge connects blossoms that are part of the same alternating
|
|
tree, this function creates a new S-blossom and returns None.
|
|
|
|
If the edge connects two different alternating trees, an augmenting
|
|
path has been discovered. In this case the function changes nothing
|
|
and returns the augmenting path.
|
|
|
|
Returns:
|
|
Augmenting path if found; otherwise None.
|
|
"""
|
|
|
|
# Trace back through the alternating trees from "x" and "y".
|
|
path = self.trace_alternating_paths(x, y)
|
|
|
|
# If the path is a cycle, create a new blossom.
|
|
# Otherwise the path is an augmenting path.
|
|
# Note that an alternating starts and ends in the same blossom,
|
|
# but not necessarily in the same vertex within that blossom.
|
|
p = path.edges[0][0]
|
|
q = path.edges[-1][1]
|
|
if self.vertex_top_blossom[p] is self.vertex_top_blossom[q]:
|
|
self.make_blossom(path)
|
|
return None
|
|
else:
|
|
return path
|
|
|
|
def substage_scan(self) -> Optional[_AlternatingPath]:
|
|
"""Scan queued S-vertices to expand the alternating trees.
|
|
|
|
The scan proceeds until either an augmenting path is found,
|
|
or the queue of S-vertices becomes empty.
|
|
|
|
New blossoms may be created during the scan.
|
|
|
|
Returns:
|
|
Augmenting path if found; otherwise None.
|
|
"""
|
|
|
|
edges = self.graph.edges
|
|
adjacent_edges = self.graph.adjacent_edges
|
|
|
|
# Process S-vertices waiting to be scanned.
|
|
# This loop runs through O(n) iterations per stage.
|
|
while self.queue:
|
|
|
|
# Take a vertex from the queue.
|
|
x = self.queue.popleft()
|
|
|
|
# Double-check that "x" is an S-vertex.
|
|
bx = self.vertex_top_blossom[x]
|
|
assert bx.label == _LABEL_S
|
|
|
|
# Scan the edges that are incident on "x".
|
|
# This loop runs through O(m) iterations per stage.
|
|
for e in adjacent_edges[x]:
|
|
(p, q, _w) = edges[e]
|
|
y = p if p != x else q
|
|
|
|
# Consider the edge between vertices "x" and "y".
|
|
# Try to pull this edge into an alternating tree.
|
|
|
|
# Note: blossom index of vertex "x" may change during
|
|
# this loop, so we need to refresh it here.
|
|
bx = self.vertex_top_blossom[x]
|
|
by = self.vertex_top_blossom[y]
|
|
|
|
# Ignore edges that are internal to a blossom.
|
|
if bx is by:
|
|
continue
|
|
|
|
ylabel = by.label
|
|
|
|
# Check whether this edge is tight (has zero slack).
|
|
# Only tight edges may be part of an alternating tree.
|
|
slack = self.edge_slack_2x(e)
|
|
if slack <= 0:
|
|
if ylabel == _LABEL_NONE:
|
|
# Assign label T to the blossom that contains "y".
|
|
self.assign_label_t(x, y)
|
|
elif ylabel == _LABEL_S:
|
|
# This edge connects two S-blossoms. Use it to find
|
|
# either a new blossom or an augmenting path.
|
|
alternating_path = self.add_s_to_s_edge(x, y)
|
|
if alternating_path is not None:
|
|
return alternating_path
|
|
|
|
elif ylabel == _LABEL_S:
|
|
# Update tracking of least-slack edges between S-blossoms.
|
|
self.lset_add_blossom_edge(bx, e, slack)
|
|
|
|
if ylabel != _LABEL_S:
|
|
# Update tracking of least-slack edges from vertex "y" to
|
|
# any S-vertex. We do this for T-vertices and unlabeled
|
|
# vertices. Edges which already have zero slack are still
|
|
# tracked.
|
|
self.lset_add_vertex_edge(y, e, slack)
|
|
|
|
# No further S vertices to scan, and no augmenting path found.
|
|
return None
|
|
|
|
#
|
|
# Delta steps:
|
|
#
|
|
|
|
def substage_calc_dual_delta(
|
|
self
|
|
) -> tuple[int, float|int, int, Optional[_NonTrivialBlossom]]:
|
|
"""Calculate a delta step in the dual LPP problem.
|
|
|
|
This function returns the minimum of the 4 types of delta values,
|
|
and the type of delta which obtain the minimum, and the edge or
|
|
blossom that produces the minimum delta, if applicable.
|
|
|
|
The returned value is 2 times the actual delta value.
|
|
Multiplication by 2 ensures that the result is an integer if all edge
|
|
weights are integers.
|
|
|
|
This function assumes that there is at least one S-vertex.
|
|
This function takes time O(n).
|
|
|
|
Returns:
|
|
Tuple (delta_type, delta_2x, delta_edge, delta_blossom).
|
|
"""
|
|
num_vertex = self.graph.num_vertex
|
|
|
|
delta_edge = -1
|
|
delta_blossom: Optional[_NonTrivialBlossom] = None
|
|
|
|
# Compute delta1: minimum dual variable of any S-vertex.
|
|
delta_type = 1
|
|
delta_2x = min(
|
|
self.vertex_dual_2x[x]
|
|
for x in range(num_vertex)
|
|
if self.vertex_top_blossom[x].label == _LABEL_S)
|
|
|
|
# Compute delta2: minimum slack of any edge between an S-vertex and
|
|
# an unlabeled vertex.
|
|
(e, slack) = self.lset_get_best_vertex_edge()
|
|
if (e != -1) and (slack <= delta_2x):
|
|
delta_type = 2
|
|
delta_2x = slack
|
|
delta_edge = e
|
|
|
|
# Compute delta3: half minimum slack of any edge between two top-level
|
|
# S-blossoms.
|
|
(e, slack) = self.lset_get_best_blossom_edge()
|
|
if e != -1:
|
|
if self.graph.integer_weights:
|
|
# If all edge weights are even integers, the slack
|
|
# of any edge between two S blossoms is also an even
|
|
# integer. Therefore the delta is an integer.
|
|
assert slack % 2 == 0
|
|
slack = slack // 2
|
|
else:
|
|
slack = slack / 2
|
|
if slack <= delta_2x:
|
|
delta_type = 3
|
|
delta_2x = slack
|
|
delta_edge = e
|
|
|
|
# Compute delta4: half minimum dual variable of a top-level T-blossom.
|
|
for blossom in self.nontrivial_blossom:
|
|
if (blossom.label == _LABEL_T) and (blossom.parent is None):
|
|
if blossom.dual_var <= delta_2x:
|
|
delta_type = 4
|
|
delta_2x = blossom.dual_var
|
|
delta_blossom = blossom
|
|
|
|
return (delta_type, delta_2x, delta_edge, delta_blossom)
|
|
|
|
def substage_apply_delta_step(self, delta_2x: int|float) -> None:
|
|
"""Apply a delta step to the dual LPP variables."""
|
|
|
|
num_vertex = self.graph.num_vertex
|
|
|
|
# Apply delta to dual variables of all vertices.
|
|
for x in range(num_vertex):
|
|
xlabel = self.vertex_top_blossom[x].label
|
|
if xlabel == _LABEL_S:
|
|
# S-vertex: subtract delta from dual variable.
|
|
self.vertex_dual_2x[x] -= delta_2x
|
|
elif xlabel == _LABEL_T:
|
|
# T-vertex: add delta to dual variable.
|
|
self.vertex_dual_2x[x] += delta_2x
|
|
|
|
# Apply delta to dual variables of top-level non-trivial blossoms.
|
|
for blossom in self.nontrivial_blossom:
|
|
if blossom.parent is None:
|
|
blabel = blossom.label
|
|
if blabel == _LABEL_S:
|
|
# S-blossom: add 2*delta to dual variable.
|
|
blossom.dual_var += delta_2x
|
|
elif blabel == _LABEL_T:
|
|
# T-blossom: subtract 2*delta from dual variable.
|
|
blossom.dual_var -= delta_2x
|
|
|
|
#
|
|
# Main stage function:
|
|
#
|
|
|
|
def run_stage(self) -> bool:
|
|
"""Run one stage of the matching algorithm.
|
|
|
|
The stage searches a maximum-weight augmenting path.
|
|
If this path is found, it is used to augment the matching,
|
|
thereby increasing the number of matched edges by 1.
|
|
If no such path is found, the matching must already be optimal.
|
|
|
|
This function takes time O(n**2).
|
|
|
|
Returns:
|
|
True if the matching was successfully augmented.
|
|
False if no further improvement is possible.
|
|
"""
|
|
|
|
num_vertex = self.graph.num_vertex
|
|
|
|
# Assign label S to all unmatched vertices and put them in the queue.
|
|
for x in range(num_vertex):
|
|
if self.vertex_mate[x] == -1:
|
|
self.assign_label_s(x)
|
|
|
|
# Stop if all vertices are matched.
|
|
# No further improvement is possible in that case.
|
|
# This avoids messy calculations of delta steps without any S-vertex.
|
|
if not self.queue:
|
|
return False
|
|
|
|
# Each pass through the following loop is a "substage".
|
|
# The substage tries to find an augmenting path.
|
|
# If an augmenting path is found, we augment the matching and end
|
|
# the stage. Otherwise we update the dual LPP problem and enter the
|
|
# next substage, or stop if no further improvement is possible.
|
|
#
|
|
# This loop runs through at most O(n) iterations per stage.
|
|
augmenting_path = None
|
|
while True:
|
|
|
|
# Expand alternating trees.
|
|
# End the stage if an augmenting path is found.
|
|
augmenting_path = self.substage_scan()
|
|
if augmenting_path is not None:
|
|
break
|
|
|
|
# Calculate delta step in the dual LPP problem.
|
|
(delta_type, delta_2x, delta_edge, delta_blossom
|
|
) = self.substage_calc_dual_delta()
|
|
|
|
# Apply the delta step to the dual variables.
|
|
self.substage_apply_delta_step(delta_2x)
|
|
|
|
if delta_type == 2:
|
|
# Use the edge from S-vertex to unlabeled vertex that got
|
|
# unlocked through the delta update.
|
|
(x, y, _w) = self.graph.edges[delta_edge]
|
|
if self.vertex_top_blossom[x].label != _LABEL_S:
|
|
(x, y) = (y, x)
|
|
self.assign_label_t(x, y)
|
|
|
|
elif delta_type == 3:
|
|
# Use the S-to-S edge that got unlocked by the delta update.
|
|
# This may reveal an augmenting path.
|
|
(x, y, _w) = self.graph.edges[delta_edge]
|
|
augmenting_path = self.add_s_to_s_edge(x, y)
|
|
if augmenting_path is not None:
|
|
break
|
|
|
|
elif delta_type == 4:
|
|
# Expand the T-blossom that reached dual value 0 through
|
|
# the delta update.
|
|
assert delta_blossom is not None
|
|
self.expand_t_blossom(delta_blossom)
|
|
|
|
else:
|
|
# No further improvement possible. End the stage.
|
|
assert delta_type == 1
|
|
break
|
|
|
|
# Augment the matching if an augmenting path was found.
|
|
if augmenting_path is not None:
|
|
self.augment_matching(augmenting_path)
|
|
|
|
# Remove all labels, clear queue.
|
|
self.reset_stage()
|
|
|
|
# Return True if the matching was augmented.
|
|
return (augmenting_path is not None)
|
|
|
|
|
|
def _verify_blossom_edges(
|
|
ctx: _MatchingContext,
|
|
blossom: _NonTrivialBlossom,
|
|
edge_slack_2x: list[int|float]
|
|
) -> None:
|
|
"""Descend down the blossom tree to find edges that are contained
|
|
in blossoms.
|
|
|
|
Adjust the slack of all contained edges to account for the dual variables
|
|
of its containing blossoms.
|
|
|
|
On the way down, keep track of the sum of dual variables of
|
|
the containing blossoms.
|
|
|
|
On the way up, keep track of the total number of matched edges
|
|
in the subblossoms. Then check that all blossoms with non-zero
|
|
dual variable are "full".
|
|
|
|
Raises:
|
|
MatchingError: If a blossom with non-zero dual is not full.
|
|
"""
|
|
|
|
num_vertex = ctx.graph.num_vertex
|
|
|
|
# For each vertex "x",
|
|
# "vertex_depth[x]" is the depth of the smallest blossom on
|
|
# the current descent path that contains "x".
|
|
vertex_depth: list[int] = num_vertex * [0]
|
|
|
|
# Keep track of the sum of blossom duals at each depth along
|
|
# the current descent path.
|
|
path_sum_dual: list[int|float] = [0]
|
|
|
|
# Keep track of the number of matched edges at each depth along
|
|
# the current descent path.
|
|
path_num_matched: list[int] = [0]
|
|
|
|
# Use an explicit stack to avoid deep recursion.
|
|
stack: list[tuple[_NonTrivialBlossom, int]] = [(blossom, -1)]
|
|
|
|
while stack:
|
|
(blossom, p) = stack[-1]
|
|
depth = len(stack)
|
|
|
|
if p == -1:
|
|
# We just entered this sub-blossom.
|
|
# Update the depth of all vertices in this sub-blossom.
|
|
for x in blossom.vertices():
|
|
vertex_depth[x] = depth
|
|
|
|
# Calculate the sub of blossoms at the current depth.
|
|
path_sum_dual.append(path_sum_dual[-1] + blossom.dual_var)
|
|
|
|
# Initialize the number of matched edges at the current depth.
|
|
path_num_matched.append(0)
|
|
|
|
p += 1
|
|
|
|
if p < len(blossom.subblossoms):
|
|
# Update the sub-blossom pointer at the current level.
|
|
stack[-1] = (blossom, p + 1)
|
|
|
|
# Examine the next sub-blossom at the current level.
|
|
sub = blossom.subblossoms[p]
|
|
if isinstance(sub, _NonTrivialBlossom):
|
|
# Prepare to descent into the selected sub-blossom and
|
|
# scan it recursively.
|
|
stack.append((sub, -1))
|
|
|
|
else:
|
|
# Handle this trivial sub-blossom.
|
|
# Scan its adjacent edges and find the smallest blossom
|
|
# that contains each edge.
|
|
for e in ctx.graph.adjacent_edges[sub.base_vertex]:
|
|
(x, y, _w) = ctx.graph.edges[e]
|
|
|
|
# Only process edges that are ordered out from this
|
|
# sub-blossom. This ensures that we process each edge in
|
|
# the blossom only once.
|
|
if x == sub.base_vertex:
|
|
|
|
edge_depth = vertex_depth[y]
|
|
if edge_depth > 0:
|
|
# This edge is contained in an ancestor blossom.
|
|
# Update its slack.
|
|
edge_slack_2x[e] += 2 * path_sum_dual[edge_depth]
|
|
|
|
# Update the number of matched edges in ancestor.
|
|
if ctx.vertex_mate[x] == y:
|
|
path_num_matched[edge_depth] += 1
|
|
|
|
else:
|
|
# We are now leaving the current sub-blossom.
|
|
|
|
# Count the number of vertices inside this blossom.
|
|
blossom_vertices = blossom.vertices()
|
|
blossom_num_vertex = len(blossom_vertices)
|
|
|
|
# Check that all blossoms are "full".
|
|
# A blossom is full if all except one of its vertices are
|
|
# matched to another vertex in the blossom.
|
|
blossom_num_matched = path_num_matched[depth]
|
|
if blossom_num_vertex != 2 * blossom_num_matched + 1:
|
|
raise MatchingError(
|
|
"Verification failed: blossom non-full"
|
|
f" dual={blossom.dual_var}"
|
|
f" nvertex={blossom_num_vertex}"
|
|
f" nmatched={blossom_num_matched}")
|
|
|
|
# Update the number of matched edges in the parent blossom to
|
|
# take into account the matched edges in this blossom.
|
|
path_num_matched[depth - 1] += path_num_matched[depth]
|
|
|
|
# Revert the depth of the vertices in this sub-blossom.
|
|
for x in blossom_vertices:
|
|
vertex_depth[x] = depth - 1
|
|
|
|
# Trim the descending path.
|
|
path_sum_dual.pop()
|
|
path_num_matched.pop()
|
|
|
|
# Remove the current blossom from the stack.
|
|
# We thus continue our scan of the parent blossom.
|
|
stack.pop()
|
|
|
|
|
|
def _verify_optimum(ctx: _MatchingContext) -> None:
|
|
"""Verify that the optimum solution has been found.
|
|
|
|
This function takes time O(n**2).
|
|
|
|
Raises:
|
|
MatchingError: If the solution is not optimal.
|
|
"""
|
|
|
|
num_vertex = ctx.graph.num_vertex
|
|
num_edge = len(ctx.graph.edges)
|
|
|
|
# Check that each matched edge actually exists in the graph.
|
|
num_matched_vertex = 0
|
|
for x in range(num_vertex):
|
|
y = ctx.vertex_mate[x]
|
|
if y != -1:
|
|
if ctx.vertex_mate[y] != x:
|
|
raise MatchingError(
|
|
"Verification failed:"
|
|
f" asymmetric match of vertex {x} and {y}")
|
|
num_matched_vertex += 1
|
|
|
|
num_matched_edge = 0
|
|
for (x, y, _w) in ctx.graph.edges:
|
|
if ctx.vertex_mate[x] == y:
|
|
num_matched_edge += 1
|
|
|
|
if num_matched_vertex != 2 * num_matched_edge:
|
|
raise MatchingError(
|
|
f"Verification failed: {num_matched_vertex} matched vertices"
|
|
f" inconsistent with {num_matched_edge} matched edges")
|
|
|
|
# Check that all dual variables are non-negative.
|
|
for x in range(num_vertex):
|
|
if ctx.vertex_dual_2x[x] < 0:
|
|
raise MatchingError(
|
|
"Verification failed:"
|
|
f" vertex {x} has negative dual {ctx.vertex_dual_2x[x]/2}")
|
|
|
|
for blossom in ctx.nontrivial_blossom:
|
|
if blossom.dual_var < 0:
|
|
raise MatchingError("Verification failed:"
|
|
f" negative blossom dual {blossom.dual_var}")
|
|
|
|
# Check that all unmatched vertices have zero dual.
|
|
for x in range(num_vertex):
|
|
if ctx.vertex_mate[x] == -1 and ctx.vertex_dual_2x[x] != 0:
|
|
raise MatchingError(
|
|
f"Verification failed: Unmatched vertex {x}"
|
|
f" has non-zero dual {ctx.vertex_dual_2x[x]/2}")
|
|
|
|
# Calculate the slack of each edge.
|
|
# A correction will be needed for edges inside blossoms.
|
|
edge_slack_2x: list[int|float] = [
|
|
ctx.vertex_dual_2x[x] + ctx.vertex_dual_2x[y] - 2 * w
|
|
for (x, y, w) in ctx.graph.edges]
|
|
|
|
# Descend down each top-level blossom.
|
|
# Adjust edge slacks to account for the duals of its containing blossoms.
|
|
# And check that all blossoms are full.
|
|
# This takes total time O(n**2).
|
|
for blossom in ctx.nontrivial_blossom:
|
|
if blossom.parent is None:
|
|
_verify_blossom_edges(ctx, blossom, edge_slack_2x)
|
|
|
|
# We now know the correct slack of each edge.
|
|
# Check that all edges have non-negative slack.
|
|
min_edge_slack = min(edge_slack_2x)
|
|
if min_edge_slack < 0:
|
|
raise MatchingError(
|
|
f"Verification failed: negative edge slack {min_edge_slack/2}")
|
|
|
|
# Check that all matched edges have zero slack.
|
|
for e in range(num_edge):
|
|
(x, y, _w) = ctx.graph.edges[e]
|
|
if ctx.vertex_mate[x] == y and edge_slack_2x[e] != 0:
|
|
raise MatchingError(
|
|
"Verification failed:"
|
|
f" matched edge ({x}, {y}) has slack {edge_slack_2x[e]/2}")
|
|
|
|
# Optimum solution confirmed.
|