1
0
Fork 0

Compare commits

...

29 Commits

Author SHA1 Message Date
Joris van Rantwijk 43502512ee Update README wrt C++ run time 2024-11-26 18:50:44 +01:00
Joris van Rantwijk d4e86e9dcc make clean at start of C++ test script 2024-11-26 18:48:26 +01:00
Joris van Rantwijk 53e5ec618e gitignore compiled C++ code 2024-11-26 11:18:14 +01:00
Joris van Rantwijk 3914ea15a7 Add Python 3.13 in tox config 2024-11-26 11:17:37 +01:00
Joris van Rantwijk d539e5cfbb Add C++ testcases from Python 2024-11-24 14:59:58 +01:00
Joris van Rantwijk f652a08d43 Rename mwmatching.h to mwmatching.hpp 2024-11-24 14:25:43 +01:00
Joris van Rantwijk 0f18b7b05a Split datastruct.h
Split into separate files concatenable_queue.hpp and priority_queue.hpp.
Move classes into namespace.
Separate unit testse.
2024-11-24 14:22:26 +01:00
Joris van Rantwijk 087799cdca Minor comment cleanup 2024-11-24 13:59:28 +01:00
Joris van Rantwijk 02917b2caf Minor code and comment cleanups 2024-11-23 22:59:40 +01:00
Joris van Rantwijk f0773eb84b Clean up code formatting 2024-11-22 23:29:10 +01:00
Joris van Rantwijk 1e6f2a11c4 Simplify expand_t_blossom() 2024-11-22 20:12:25 +01:00
Joris van Rantwijk b5ccbdeda4 Remove expand_unlabeled_blossom() 2024-11-21 21:46:39 +01:00
Joris van Rantwijk 3815335a9f Keep alternating trees between stages in C++ 2024-11-20 21:10:14 +01:00
Joris van Rantwijk 082397ef80 Minor cleanup 2024-11-19 21:25:05 +01:00
Joris van Rantwijk ab691813b3 The C++ code should now run in O(n*m*log(n)) 2024-11-17 21:19:15 +01:00
Joris van Rantwijk 105679c986 Use iterator to delete expanded blossom 2024-11-17 20:46:58 +01:00
Joris van Rantwijk 7683f891d5 Use priority queues for delta2 2024-11-17 19:18:57 +01:00
Joris van Rantwijk 22251e64e8 Maintain concatenable queue for each blossom 2024-11-17 12:02:40 +01:00
Joris van Rantwijk 5b5c107a5c Initialize ConcatenableQueue name in constructor 2024-11-16 23:41:29 +01:00
Joris van Rantwijk e8020f3e58 Use priority queue for delta4 2024-11-16 20:23:51 +01:00
Joris van Rantwijk 2271df1897 Lazy updates of blossom duals 2024-11-16 14:23:13 +01:00
Joris van Rantwijk 228da75495 Lazy updates of vertex duals 2024-11-16 10:32:35 +01:00
Joris van Rantwijk 5500750c13 Reorganize code that handles labeling 2024-11-14 23:31:11 +01:00
Joris van Rantwijk 39eaea451e Minor code rearrangement 2024-11-10 00:10:26 +01:00
Joris van Rantwijk 7ea1562cc7 Use tight edges only during delta steps 2024-11-09 21:39:52 +01:00
Joris van Rantwijk 55a98238aa Implement heap-based tracking for delta3 2024-11-09 00:11:07 +01:00
Joris van Rantwijk b17ca1a364 Require signed type for edge weight 2024-11-08 20:30:53 +01:00
Joris van Rantwijk 67ca294840 Rework data structures 2024-11-08 18:38:20 +01:00
Joris van Rantwijk efb238ff8e C++ datastructures for O(n*m*log(n)) 2024-11-02 09:43:33 +01:00
14 changed files with 2765 additions and 677 deletions

2
.gitignore vendored
View File

@ -2,6 +2,8 @@ __pycache__/
.coverage
cpp/test_mwmatching
cpp/test_concatenable_queue
cpp/test_priority_queue
cpp/run_matching
cpp/run_matching_dbg
tests/lemon/lemon_matching

View File

@ -42,10 +42,6 @@ print(matching) # prints [(1, 4), (2, 3)]
The folder [cpp/](cpp/) contains a header-only C++ implementation of maximum weighted matching.
**NOTE:**
The C++ code currently implements a slower algorithm that runs in _O(n<sup>3</sup>)_ steps.
I plan to eventually update the C++ code to implement the faster _O(n m log n)_ algorithm.
The C++ code is self-contained and can easily be linked into an application.
It is also reasonably efficient.

View File

@ -6,22 +6,34 @@ CXXFLAGS = -std=c++11 -Wall -Wextra $(OPTFLAGS) $(DBGFLAGS)
LIB_BOOST_TEST = -l:libboost_unit_test_framework.a
.PHONY: all
all: run_matching run_matching_dbg test_mwmatching
all: run_matching run_matching_dbg test_mwmatching test_concatenable_queue test_priority_queue
run_matching: run_matching.cpp mwmatching.h
run_matching: run_matching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $<
run_matching_dbg: OPTFLAGS = -Og
run_matching_dbg: DBGFLAGS = -g -fsanitize=address -fsanitize=undefined
run_matching_dbg: run_matching.cpp mwmatching.h
run_matching_dbg: run_matching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $<
test_mwmatching: OPTFLAGS = -O1
test_mwmatching: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_mwmatching: test_mwmatching.cpp mwmatching.h
test_mwmatching: test_mwmatching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
test_concatenable_queue: OPTFLAGS = -O1
test_concatenable_queue: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_concatenable_queue: test_concatenable_queue.cpp concatenable_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
test_priority_queue: OPTFLAGS = -O1
test_priority_queue: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_priority_queue: test_priority_queue.cpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
.PHONY: clean
clean:
$(RM) run_matching run_matching_dbg test_mwmatching
$(RM) run_matching run_matching_dbg
$(RM) test_mwmatching
$(RM) test_concatenable_queue test_priority_queue

841
cpp/concatenable_queue.hpp Normal file
View File

@ -0,0 +1,841 @@
/**
* Concatenable queue data structure.
*/
#ifndef MWMATCHING_CONCATENABLE_QUEUE_H_
#define MWMATCHING_CONCATENABLE_QUEUE_H_
#include <algorithm>
#include <cassert>
#include <tuple>
namespace mwmatching {
/**
* Priority queue supporting efficient merge and split operations.
*
* Conceptually, this is a combination of a disjoint set and a priority queue.
* Each queue has a "name".
* Each element has associated "data".
* Each element has a priority.
* Each element is contained in at most one queue at any time.
*
* The following operations can be done efficiently:
* - Find the name of the queue that contains a given element.
* - Change the priority of a given element.
* - Find the element with lowest priority in a given queue.
* - Merge two or more queues.
* - Undo a previous merge step.
*
* A ConcatenableQueue instance may be destructed if it is empty and not
* currently merged into a larger queue. Alternatively, a group of related
* ConcatenableQueue instances and their Node instances may be destructed
* together, even if non-empty. In this case, the objects may be destructed
* in any order. No other interactions with the objects are allowed once
* destruction has started.
*
* This data structure is implemented as an AVL tree, with minimum-priority
* tracking added to it.
* See also
* https://en.wikipedia.org/wiki/Avl_tree
* and
* G. Blelloch, D. Ferizovic, Y. Sun, Parallel Ordered Sets Using Join,
* https://arxiv.org/abs/1602.02120
*/
template <typename PrioType,
typename NameType,
typename DataType>
class ConcatenableQueue
{
public:
/**
* A Node instance represents an element in a concatenable queue.
*
* A Node instance must remain valid while it is contained in a queue.
* The containing queue holds a pointer to the Node.
*
* A Node instance may be destructed if it is not contained in any queue.
* Alternatively, a Node instance may be destructed just before or after
* destructing the containing queue. In this case, no intermediate
* interactions with the node or queue are allowed.
*/
class Node
{
public:
/** Construct an unused node, not yet contained in any queue. */
Node()
: owner_(nullptr)
, parent_(nullptr)
, left_child_(nullptr)
, right_child_(nullptr)
, height_(0)
{ }
// Prevent copying.
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
/**
* Return the name of the queue that contains this element.
*
* The node must be contained in a queue.
* This function takes time O(log(n)).
*/
NameType find() const
{
const Node* node = this;
while (node->parent_) {
node = node->parent_;
}
assert(node->owner_);
return node->owner_->name();
}
/**
* Return the priority of this element.
*
* The node must be contained in a queue.
* This function takes time O(1).
*/
PrioType prio() const
{
assert(height_ != 0);
return prio_;
}
/**
* Change the priority of this element.
*
* The node must be contained in a queue.
* This function takes time O(log(n)).
*/
void set_prio(PrioType new_prio)
{
assert(height_ != 0);
prio_ = new_prio;
Node* node = this;
while (node) {
PrioType min_prio = node->prio_;
DataType min_data = node->data_;
for (Node* child : { node->left_child_,
node->right_child_ }) {
if (child && child->min_prio_ < min_prio) {
min_prio = child->min_prio_;
min_data = child->min_data_;
}
}
node->min_prio_ = min_prio;
node->min_data_ = min_data;
node = node->parent_;
}
}
private:
PrioType prio_;
DataType data_;
PrioType min_prio_;
DataType min_data_;
ConcatenableQueue* owner_;
Node* parent_;
Node* left_child_;
Node* right_child_;
unsigned int height_;
friend class ConcatenableQueue;
};
/** Construct an empty queue. */
explicit ConcatenableQueue(const NameType& name)
: name_(name)
, tree_(nullptr)
, first_node_(nullptr)
, first_subqueue_(nullptr)
, next_subqueue_(nullptr)
{ }
// Prevent copying.
ConcatenableQueue(const ConcatenableQueue&) = delete;
ConcatenableQueue& operator=(const ConcatenableQueue&) = delete;
/** Return the name of this queue. */
NameType name() const
{
return name_;
}
/**
* Insert the specified Node into the queue.
*
* The Node instance must be unused (not yet contained in any queue).
*
* The queue must be empty. Only one element can be inserted into
* a queue in this way. Larger queues can only result from merging.
*
* The queue stores a pointer to the Node instance. The Node instance must
* remain valid for as long as it is contained in any queue.
*
* This function takes time O(1).
*/
void insert(Node* node, PrioType prio, const DataType& data)
{
assert(! tree_);
assert(! first_node_);
assert(node->height_ == 0);
assert(! node->parent_);
assert(! node->left_child_);
assert(! node->right_child_);
node->prio_ = prio;
node->data_ = data;
node->min_prio_ = prio;
node->min_data_ = data;
node->owner_ = this;
node->height_ = 1;
tree_ = node;
first_node_ = node;
}
/**
* Return the minimum priority of any element in the queue.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
PrioType min_prio() const
{
assert(tree_);
return tree_->min_prio_;
}
/**
* Return the element with minimum priority.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
DataType min_elem() const
{
assert(tree_);
return tree_->min_data_;
}
/**
* Merge the specified queues.
*
* This queue instance must inititially be empty.
* All specified sub-queues must initially be non-empty.
*
* This function removes all elements from the specified sub-queues
* and adds them to this queue.
*
* After merging, this queue retains references to the sub-queues.
* These may be used later to split (undo the merge step).
*
* This function takes time O(n_sub_queues * log(n)).
*/
template <typename QueueIterator>
void merge(QueueIterator sub_queues_begin, QueueIterator sub_queues_end)
{
assert(! tree_);
assert(! first_node_);
assert(sub_queues_begin != sub_queues_end);
// Pull the root node from the first sub-queue.
ConcatenableQueue* sub = *sub_queues_begin;
assert(sub->tree_);
Node* merged_tree = sub->tree_;
sub->tree_ = nullptr;
// Clear owner pointer from tree.
assert(merged_tree->owner_ == sub);
merged_tree->owner_ = nullptr;
// Copy first node to this queue.
assert(sub->first_node_);
first_node_ = sub->first_node_;
// Build linked list of sub-queues, starting with the first sub-queue.
assert(! sub->next_subqueue_);
first_subqueue_ = sub;
// Merge remaining sub-queues.
QueueIterator it = sub_queues_begin;
++it;
while (it != sub_queues_end) {
ConcatenableQueue* prev_sub = sub;
sub = *it;
// Clear owner pointer and root node from the sub-queue.
assert(sub->tree_);
assert(sub->tree_->owner_ == sub);
sub->tree_->owner_ = nullptr;
// Merge sub-queue tree into our current tree.
merged_tree = merge_tree(merged_tree, sub->tree_);
// Clear root pointer from sub-queue.
sub->tree_ = nullptr;
// Add sub-queue to linked list of sub-queues.
assert(! sub->next_subqueue_);
prev_sub->next_subqueue_ = sub;
++it;
}
// Put owner pointer in the root node of the tree.
merged_tree->owner_ = this;
tree_ = merged_tree;
}
/**
* Undo the merge step that created this queue.
*
* Remove all elements from this queue and put them back in
* the sub-queues from which they came.
*
* After splitting, this queue will be empty.
*
* This function takes time O(n_sub_queues * log(n)).
*/
void split()
{
assert(tree_);
assert(first_subqueue_);
// Clear the owner pointer from the root node.
assert(tree_->owner_ == this);
tree_->owner_ = nullptr;
Node* rtree = tree_;
ConcatenableQueue* sub = first_subqueue_;
// Repeatedly split the tree to reconstruct each sub-queue.
while (sub->next_subqueue_) {
ConcatenableQueue* next_sub = sub->next_subqueue_;
sub->next_subqueue_ = nullptr;
// Split the tree on the first node of the next sub-queue.
assert(next_sub->first_node_);
Node* ltree;
std::tie(ltree, rtree) = split_tree(next_sub->first_node_);
// Put the left half of the tree in the current sub-queue.
sub->tree_ = ltree;
ltree->owner_ = sub;
// Continue to next sub-queue.
sub = next_sub;
}
// Put the remaining part of the tree in the last sub-queue.
rtree->owner_ = sub;
sub->tree_ = rtree;
// Clean up this instance.
tree_ = nullptr;
first_node_ = nullptr;
first_subqueue_ = nullptr;
}
private:
/**
* Merge two trees and rebalance.
*
* This function takes time O(log(n)).
*/
static Node* merge_tree(Node* ltree, Node* rtree)
{
// Remove the last node from the left tree.
Node* node;
std::tie(ltree, node) = split_last_node(ltree);
// Join the trees.
return join(ltree, node, rtree);
}
/**
* Remove the last node from the tree and rebalance.
*
* This function takes time O(log(n)).
*/
static std::tuple<Node*, Node*> split_last_node(Node* tree)
{
assert(tree);
/*
* Descend down the right spine of the tree to find the last node.
*
* tree
* / \
* X
* / \
* X <-- parent
* / \
* last_node
* /
* X <-- ltree
*/
// Find last node.
Node* last_node = tree;
while (last_node->right_child_) {
last_node = last_node->right_child_;
}
// Detach its left subtree.
Node* ltree = last_node->left_child_;
last_node->left_child_ = nullptr;
if (ltree) {
ltree->parent_ = nullptr;
}
// Detach from the parent.
Node* parent = last_node->parent_;
last_node->parent_ = nullptr;
if (parent) {
parent->right_child_ = nullptr;
}
// Reconstruct along the right spine of the original tree.
while (parent) {
// Step to parent.
Node* cur = parent;
parent = cur->parent_;
// Detach from its own parent.
cur->parent_ = nullptr;
if (parent) {
parent->right_child_ = nullptr;
}
// Join the current node to the reconstructed tree.
ltree = join(cur->left_child_, cur, ltree);
}
return std::make_tuple(ltree, last_node);
}
/**
* Split a tree on a specified node.
*
* Two new trees will be constructed.
* Leaf nodes to the left of "split_node" will go to the left tree.
* Leaf nodes to the right of "split_node", and "split_node" itself,
* will go to the right tree.
*
* This function takes time O(log(n)).
*/
static std::tuple<Node*, Node*> split_tree(Node* split_node)
{
assert(split_node);
// All left-descendants of "split_node" belong in the left tree.
// Detach it from "split_node".
Node* ltree = split_node->left_child_;
split_node->left_child_ = nullptr;
if (ltree) {
ltree->parent_ = nullptr;
}
// Start with an empty right tree.
Node* rtree = nullptr;
// Start at "split_node".
// Take note of the fact that the "cut" between the two halves of
// the tree runs down its left branch, since "split_node" itself
// belongs to the right tree.
Node* node = split_node;
bool left_branch = true;
// Work upwards through the tree, assigning each node either to
// the new left tree or the new right tree.
//
// This loop runs for O(log(n)) iterations.
// Each iteration calls join() once, taking time proportional
// to the difference in height between the intermediate trees.
// The total run time of all join() calls together is O(log(n)).
while (node) {
// Detach the current node from its parent.
// Remember to which branch of the parent it was attached.
Node* parent = node->parent_;
node->parent_ = nullptr;
bool parent_left_branch = true;
if (parent) {
parent_left_branch = (parent->left_child_ == node);
if (parent_left_branch) {
parent->left_child_ = nullptr;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = nullptr;
}
}
// Join the current node and its remaining descendents either
// to the left tree or to the right tree.
if (left_branch) {
/*
* "node" belongs to the right tree.
* Join like this:
*
* (node) <--- new rtree
* / \
* (rtree) (node->right_child)
*/
assert(! node->left_child_);
rtree = join(rtree, node, node->right_child_);
} else {
/*
* "node" belongs to the left tree.
* Join like this:
*
* (node) <--- new ltree
* / \
* (node->left_child) (ltree)
*/
assert(! node->right_child_);
ltree = join(node->left_child_, node, ltree);
}
// Continue with the parent node.
node = parent;
left_branch = parent_left_branch;
}
// Done. All that remains of the old tree is the two new halves.
return std::make_tuple(ltree, rtree);
}
/** Return node height, or 0 if node == nullptr. */
static unsigned int get_node_height(const Node* node)
{
return node ? node->height_ : 0;
}
/**
* Repair the height and min-priority information of a node
* after modifying its children.
*
* After repairing a node, it is typically necessary to also repair
* its ancestors.
*/
static void repair_node(Node* node)
{
Node* lchild = node->left_child_;
Node* rchild = node->right_child_;
// Repair node height.
node->height_ = 1 + std::max(get_node_height(lchild),
get_node_height(rchild));
// Repair min-priority.
PrioType min_prio = node->prio_;
DataType min_data = node->data_;
for (Node* child : { lchild, rchild }) {
if (child && child->min_prio_ < min_prio) {
min_prio = child->min_prio_;
min_data = child->min_data_;
}
}
node->min_prio_ = min_prio;
node->min_data_ = min_data;
}
/** Rotate the subtree to the left and return the new root of the subtree. */
static Node* rotate_left(Node* node)
{
/*
* N C
* / \ / \
* A C ---> N D
* / \ / \
* B D A B
*/
Node* parent = node->parent_;
Node* new_top = node->right_child_;
assert(new_top);
Node* nb = new_top->left_child_;
node->right_child_ = nb;
if (nb) {
nb->parent_ = node;
}
new_top->left_child_ = node;
node->parent_ = new_top;
new_top->parent_ = parent;
if (parent) {
if (parent->left_child_ == node) {
parent->left_child_ = new_top;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = new_top;
}
}
repair_node(node);
repair_node(new_top);
return new_top;
}
/** Rotate the subtree to the right and return the new root of the subtree. */
static Node* rotate_right(Node* node)
{
/*
* N B
* / \ / \
* B D ---> A N
* / \ / \
* A C C D
*/
Node* parent = node->parent_;
Node* new_top = node->left_child_;
assert(new_top);
Node* nc = new_top->right_child_;
node->left_child_ = nc;
if (nc) {
nc->parent_ = node;
}
new_top->right_child_ = node;
node->parent_ = new_top;
new_top->parent_ = parent;
if (parent) {
if (parent->left_child_ == node) {
parent->left_child_ = new_top;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = new_top;
}
}
repair_node(node);
repair_node(new_top);
return new_top;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The left subtree is higher than the right subtree.
*/
static Node* join_right(Node* ltree, Node* node, Node* rtree)
{
assert(ltree);
unsigned int lh = ltree->height_;
unsigned int rh = get_node_height(rtree);
assert(lh > rh + 1);
/*
* Descend down the right spine of "ltree".
* Stop at a node with compatible height, then insert "node"
* and attach "rtree".
*
* ltree
* / \
* X
* / \
* X <-- cur
* / \
* node
* / \
* X rtree
*/
// Descend to a point with compatible height.
Node* cur = ltree;
while (cur->right_child_ && (cur->right_child_->height_ > rh + 1)) {
cur = cur->right_child_;
}
// Insert "node" and "rtree".
node->left_child_ = cur->right_child_;
node->right_child_ = rtree;
if (node->left_child_) {
node->left_child_->parent_ = node;
}
if (rtree) {
rtree->parent_ = node;
}
cur->right_child_ = node;
node->parent_ = cur;
// A double rotation may be necessary.
if ((! cur->left_child_) || (cur->left_child_->height_ <= rh)) {
node = rotate_right(node);
cur = rotate_left(cur);
} else {
repair_node(node);
repair_node(cur);
}
// Ascend from "cur" to the root of the tree; repair and rebalance.
while (cur->parent_) {
cur = cur->parent_;
assert(cur->left_child_);
assert(cur->right_child_);
if (cur->left_child_->height_ + 1 < cur->right_child_->height_) {
cur = rotate_left(cur);
} else {
repair_node(cur);
}
}
return cur;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The right subtree is higher than the left subtree.
*/
static Node* join_left(Node* ltree, Node* node, Node* rtree)
{
assert(rtree);
unsigned int lh = get_node_height(ltree);
unsigned int rh = rtree->height_;
assert(lh + 1 < rh);
/*
* Descend down the left spine of "rtree".
* Stop at a node with compatible height, then insert "node"
* and attach "ltree".
*
* rtree
* / \
* X
* / \
* cur --> X
* / \
* node
* / \
* ltree X
*/
// Descend to a point with compatible height.
Node* cur = rtree;
while (cur->left_child_ && (cur->left_child_->height_ > lh + 1)) {
cur = cur->left_child_;
}
// Insert "node" and "ltree".
node->left_child_ = ltree;
node->right_child_ = cur->left_child_;
if (ltree) {
ltree->parent_ = node;
}
if (node->right_child_) {
node->right_child_->parent_ = node;
}
cur->left_child_ = node;
node->parent_ = cur;
// A double rotation may be necessary.
if ((! cur->right_child_) || (cur->right_child_->height_ <= lh)) {
node = rotate_left(node);
cur = rotate_right(cur);
} else {
repair_node(node);
repair_node(cur);
}
// Ascend from "cur" to the root of the tree; repair and rebalance.
while (cur->parent_) {
cur = cur->parent_;
assert(cur->left_child_);
assert(cur->right_child_);
if (cur->left_child_->height_ > cur->right_child_->height_ + 1) {
cur = rotate_right(cur);
} else {
repair_node(cur);
}
}
return cur;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The left or right subtree may initially be a child of the middle
* node; such links will be broken as needed.
*
* The left and right subtrees must be consistent, semi-balanced trees.
* Height and priority of the middle node may initially be inconsistent;
* this function will repair it.
*
* @return Root node of the joined tree.
*/
static Node* join(Node* ltree, Node* node, Node* rtree)
{
unsigned int lh = get_node_height(ltree);
unsigned int rh = get_node_height(rtree);
if (lh > rh + 1) {
assert(ltree);
ltree->parent_ = nullptr;
return join_right(ltree, node, rtree);
} else if (lh + 1 < rh) {
assert(rtree);
rtree->parent_ = nullptr;
return join_left(ltree, node, rtree);
} else {
/*
* Subtree heights are compatible. Just join them.
*
* node
* / \
* ltree rtree
* / \ / \
*/
node->parent_ = nullptr;
node->left_child_ = ltree;
if (ltree) {
ltree->parent_ = node;
}
node->right_child_ = rtree;
if (rtree) {
rtree->parent_ = node;
}
repair_node(node);
return node;
}
}
/** Name of this queue. */
const NameType name_;
/** Root node of the tree, or "nullptr" if the queue is empty. */
Node* tree_;
/** Left-most node that belongs to this queue. */
Node* first_node_;
/** Pointer to first sub-queue that got merged into this instance. */
ConcatenableQueue* first_subqueue_;
/** Linked list of sub-queues that were merged to build this queue. */
ConcatenableQueue* next_subqueue_;
};
} // namespace mwmatching
#endif // MWMATCHING_CONCATENABLE_QUEUE_H_

File diff suppressed because it is too large Load Diff

266
cpp/priority_queue.hpp Normal file
View File

@ -0,0 +1,266 @@
/**
* Priority queue data structure.
*/
#ifndef MWMATCHING_PRIORITY_QUEUE_H_
#define MWMATCHING_PRIORITY_QUEUE_H_
#include <cassert>
#include <limits>
#include <vector>
namespace mwmatching {
/**
* Min-priority queue implemented as a binary heap.
*
* Elements in a heap have a priority and associated "data".
*
* The following operations can be done efficiently:
* - Insert an element into the queue.
* - Remove an element from the queue.
* - Change the priority of a given element.
* - Find the element with lowest priority in the queue.
*/
template <typename PrioType,
typename DataType>
class PriorityQueue
{
public:
typedef unsigned int IndexType;
static constexpr IndexType INVALID_INDEX =
std::numeric_limits<IndexType>::max();
/**
* A Node instance represents an element in a PriorityQueue.
*
* A Node instance must remain valid while it is contained in a queue.
* The containing queue holds a pointer to the Node.
*
* A Node instance may be destructed if it is not contained in any queue.
* Alternatively, a Node instance may be destructed after its containing
* queue instance has been destructed.
*/
class Node
{
public:
/** Construct an invalid node, not contained in any queue. */
Node()
: index_(INVALID_INDEX)
{ }
// Prevent copying.
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
/** Return true if this node is contained in a queue. */
bool valid() const
{
return (index_ != INVALID_INDEX);
}
/**
* Return the priority of this node in the queue.
*
* The node must be contained in a queue.
* This function takes time O(1).
*/
PrioType prio() const
{
assert(index_ != INVALID_INDEX);
return prio_;
}
private:
IndexType index_;
PrioType prio_;
DataType data_;
friend class PriorityQueue;
};
/** Construct an empty queue. */
PriorityQueue()
{ }
// Prevent copying.
PriorityQueue(const PriorityQueue&) = delete;
PriorityQueue& operator=(const PriorityQueue&) = delete;
/**
* Remove all elements from the queue.
*
* This function takes time O(n).
*/
void clear()
{
for (Node* node : heap_) {
node->index_ = INVALID_INDEX;
}
heap_.clear();
}
/** Return true if the queue is empty. */
bool empty() const
{
return heap_.empty();
}
/**
* Return the minimum priority of any element in the queue.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
PrioType min_prio() const
{
assert(! heap_.empty());
Node* top = heap_.front();
return top->prio_;
}
/**
* Return the element with minimum priority.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
DataType min_elem() const
{
assert(! heap_.empty());
Node* top = heap_.front();
return top->data_;
}
/**
* Insert the given node into the queue with associated data.
*
* The node must not currently be contained in any queue.
* This function takes amortized time O(log(n)).
*/
void insert(Node* node, PrioType prio, const DataType& data)
{
assert(node->index_ == INVALID_INDEX);
node->index_ = heap_.size();
node->prio_ = prio;
node->data_ = data;
heap_.push_back(node);
sift_up(node->index_);
}
/**
* Update priority of an existing node.
*
* This function takes time O(log(n)).
*/
void set_prio(Node* node, PrioType prio)
{
IndexType index = node->index_;
assert(index != INVALID_INDEX);
assert(heap_[index] == node);
PrioType prev_prio = node->prio_;
node->prio_ = prio;
if (prio < prev_prio) {
sift_up(index);
} else if (prio > prev_prio) {
sift_down(index);
}
}
/**
* Remove the specified element from the queue.
*
* This function takes time O(log(n)).
*/
void remove(Node* node)
{
IndexType index = node->index_;
assert(index != INVALID_INDEX);
assert(heap_[index] == node);
node->index_ = INVALID_INDEX;
Node* move_node = heap_.back();
heap_.pop_back();
if (index < heap_.size()) {
heap_[index] = move_node;
move_node->index_ = index;
if (move_node->prio_ < node->prio_) {
sift_up(index);
} else if (move_node->prio_ > node->prio_) {
sift_down(index);
}
}
}
private:
/** Repair the heap along an ascending path to the root. */
void sift_up(IndexType index)
{
Node* node = heap_[index];
PrioType prio = node->prio_;
while (index > 0) {
IndexType next_index = (index - 1) / 2;
Node* next_node = heap_[next_index];
if (next_node->prio_ <= prio) {
break;
}
heap_[index] = next_node;
next_node->index_ = index;
index = next_index;
}
node->index_ = index;
heap_[index] = node;
}
/** Repair the heap along a descending path. */
void sift_down(IndexType index)
{
Node* node = heap_[index];
PrioType prio = node->prio_;
IndexType num_elem = heap_.size();
while (index < num_elem / 2) {
IndexType next_index = 2 * index + 1;
Node* next_node = heap_[next_index];
if (next_index + 1 < num_elem) {
Node* tmp_node = heap_[next_index + 1];
if (tmp_node->prio_ <= next_node->prio_) {
++next_index;
next_node = tmp_node;
}
}
if (next_node->prio_ >= prio) {
break;
}
heap_[index] = next_node;
next_node->index_ = index;
index = next_index;
}
heap_[index] = node;
node->index_ = index;
}
/** Heap data structure. */
std::vector<Node*> heap_;
};
} // namespace mwmatching
#endif // MWMATCHING_PRIORITY_QUEUE_H_

View File

@ -13,7 +13,7 @@
#include <utility>
#include <vector>
#include "mwmatching.h"
#include "mwmatching.hpp"
namespace { // anonymous namespace

View File

@ -0,0 +1,403 @@
/*
* Unit tests for ConcatenableQueue data structure.
*
* Depends on the Boost.Test unit test framework.
* Tested with Boost v1.74, available from https://www.boost.org/
*/
#include <algorithm>
#include <memory>
#include <random>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#define BOOST_TEST_MODULE datastruct
#include <boost/test/unit_test.hpp>
#include "concatenable_queue.hpp"
BOOST_AUTO_TEST_SUITE(test_concatenable_queue)
BOOST_AUTO_TEST_CASE(test_single)
{
using Queue = mwmatching::ConcatenableQueue<int, std::string, std::string>;
Queue q("Q");
BOOST_TEST(q.name() == std::string("Q"));
Queue::Node n;
q.insert(&n, 4, "a");
BOOST_TEST(n.find() == std::string("Q"));
BOOST_TEST(n.prio() == 4);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == std::string("a"));
n.set_prio(8);
BOOST_TEST(n.prio() == 8);
BOOST_TEST(n.find() == std::string("Q"));
BOOST_TEST(q.min_prio() == 8);
BOOST_TEST(q.min_elem() == std::string("a"));
}
BOOST_AUTO_TEST_CASE(test_simple)
{
using Queue = mwmatching::ConcatenableQueue<int, std::string, char>;
Queue::Node n1, n2, n3, n4, n5;
Queue q1("A");
q1.insert(&n1, 5, 'a');
Queue q2("B");
q2.insert(&n2, 6, 'b');
Queue q3("C");
q3.insert(&n3, 7, 'c');
Queue q4("D");
q4.insert(&n4, 4, 'd');
Queue q5("E");
q5.insert(&n5, 3, 'e');
auto m345 = {&q3, &q4, &q5};
Queue q345("P");
q345.merge(m345.begin(), m345.end());
BOOST_TEST(n1.find() == std::string("A"));
BOOST_TEST(n2.find() == std::string("B"));
BOOST_TEST(n3.find() == std::string("P"));
BOOST_TEST(n4.find() == std::string("P"));
BOOST_TEST(n5.find() == std::string("P"));
BOOST_TEST(q345.min_prio() == 3);
BOOST_TEST(q345.min_elem() == 'e');
n5.set_prio(6);
BOOST_TEST(q345.min_prio() == 4);
BOOST_TEST(q345.min_elem() == 'd');
auto m12 = {&q1, &q2};
Queue q12("Q");
q12.merge(m12.begin(), m12.end());
BOOST_TEST(n1.find() == std::string("Q"));
BOOST_TEST(n2.find() == std::string("Q"));
BOOST_TEST(q12.min_prio() == 5);
BOOST_TEST(q12.min_elem() == 'a');
auto m12345 = {&q12, &q345};
Queue q12345("R");
q12345.merge(m12345.begin(), m12345.end());
BOOST_TEST(n1.find() == std::string("R"));
BOOST_TEST(n2.find() == std::string("R"));
BOOST_TEST(n3.find() == std::string("R"));
BOOST_TEST(n4.find() == std::string("R"));
BOOST_TEST(n5.find() == std::string("R"));
BOOST_TEST(q12345.min_prio() == 4);
BOOST_TEST(q12345.min_elem() == 'd');
n4.set_prio(8);
BOOST_TEST(q12345.min_prio() == 5);
BOOST_TEST(q12345.min_elem() == 'a');
n3.set_prio(2);
BOOST_TEST(q12345.min_prio() == 2);
BOOST_TEST(q12345.min_elem() == 'c');
q12345.split();
BOOST_TEST(n1.find() == std::string("Q"));
BOOST_TEST(n2.find() == std::string("Q"));
BOOST_TEST(n3.find() == std::string("P"));
BOOST_TEST(n4.find() == std::string("P"));
BOOST_TEST(n5.find() == std::string("P"));
BOOST_TEST(q12.min_prio() == 5);
BOOST_TEST(q12.min_elem() == 'a');
BOOST_TEST(q345.min_prio() == 2);
BOOST_TEST(q345.min_elem() == 'c');
q12.split();
BOOST_TEST(n1.find() == std::string("A"));
BOOST_TEST(n2.find() == std::string("B"));
q345.split();
BOOST_TEST(n3.find() == std::string("C"));
BOOST_TEST(n4.find() == std::string("D"));
BOOST_TEST(n5.find() == std::string("E"));
BOOST_TEST(q3.min_prio() == 2);
BOOST_TEST(q3.min_elem() == 'c');
}
BOOST_AUTO_TEST_CASE(test_medium)
{
using Queue = mwmatching::ConcatenableQueue<int, char, char>;
std::vector<char> queue_names(19);
for (int i = 0; i < 14; i++) {
queue_names[i] = 'A' + i;
}
queue_names[14] = 'P';
queue_names[15] = 'Q';
queue_names[16] = 'R';
queue_names[17] = 'S';
queue_names[18] = 'Z';
std::vector<Queue> queues(queue_names.begin(), queue_names.end());
Queue::Node nodes[14];
int prios[14] = {3, 8, 6, 2, 9, 4, 6, 8, 1, 5, 9, 4, 7, 8};
auto min_prio = [&prios](int begin, int end) -> int {
int p = begin;
int m = prios[p];
++p;
while (p != end) {
m = std::min(m, prios[p]);
++p;
}
return m;
};
for (int i = 0; i < 14; i++) {
BOOST_TEST(queues[i].name() == 'A' + i);
queues[i].insert(&nodes[i], prios[i], 'a' + i);
}
auto m14 = {&queues[0], &queues[1]};
queues[14].merge(m14.begin(), m14.end());
BOOST_TEST(queues[14].name() == 'P');
BOOST_TEST(queues[14].min_prio() == min_prio(0, 2));
auto m15 = {&queues[2], &queues[3], &queues[4]};
queues[15].merge(m15.begin(), m15.end());
BOOST_TEST(queues[15].name() == 'Q');
BOOST_TEST(queues[15].min_prio() == min_prio(2, 5));
auto m16 = {&queues[5], &queues[6], &queues[7], &queues[8]};
queues[16].merge(m16.begin(), m16.end());
BOOST_TEST(queues[16].name() == 'R');
BOOST_TEST(queues[16].min_prio() == min_prio(5, 9));
auto m17 = {&queues[9], &queues[10], &queues[11], &queues[12],
&queues[13]};
queues[17].merge(m17.begin(), m17.end());
BOOST_TEST(queues[17].name() == 'S');
BOOST_TEST(queues[17].min_prio() == min_prio(9, 14));
for (int i = 0; i < 2; i++) {
BOOST_TEST(nodes[i].find() == 'P');
}
for (int i = 2; i < 5; i++) {
BOOST_TEST(nodes[i].find() == 'Q');
}
for (int i = 5; i < 9; i++) {
BOOST_TEST(nodes[i].find() == 'R');
}
for (int i = 9; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'S');
}
auto m18 = {&queues[14], &queues[15], &queues[16], &queues[17]};
queues[18].merge(m18.begin(), m18.end());
BOOST_TEST(queues[18].name() == 'Z');
BOOST_TEST(queues[18].min_prio() == 1);
BOOST_TEST(queues[18].min_elem() == 'i');
for (int i = 0; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'Z');
}
prios[8] = 5;
nodes[8].set_prio(prios[8]);
BOOST_TEST(queues[18].min_prio() == 2);
BOOST_TEST(queues[18].min_elem() == 'd');
queues[18].split();
for (int i = 0; i < 2; i++) {
BOOST_TEST(nodes[i].find() == 'P');
}
for (int i = 2; i < 5; i++) {
BOOST_TEST(nodes[i].find() == 'Q');
}
for (int i = 5; i < 9; i++) {
BOOST_TEST(nodes[i].find() == 'R');
}
for (int i = 9; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'S');
}
BOOST_TEST(queues[14].min_prio() == min_prio(0, 2));
BOOST_TEST(queues[15].min_prio() == min_prio(2, 5));
BOOST_TEST(queues[16].min_prio() == min_prio(5, 9));
BOOST_TEST(queues[17].min_prio() == min_prio(9, 14));
for (int i = 14; i < 18; i++) {
queues[i].split();
}
for (int i = 0; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'A' + i);
BOOST_TEST(queues[i].min_prio() == prios[i]);
BOOST_TEST(queues[i].min_elem() == 'a' + i);
}
}
BOOST_AUTO_TEST_CASE(test_random)
{
using Queue = mwmatching::ConcatenableQueue<double, int, int>;
constexpr int NUM_NODES = 4000;
std::mt19937 rng(23456);
std::uniform_real_distribution<> prio_distribution;
std::uniform_int_distribution<> node_distribution(0, NUM_NODES - 1);
double prios[NUM_NODES];
Queue::Node nodes[NUM_NODES];
std::unordered_map<int, std::unique_ptr<Queue>> queues;
std::unordered_map<int, std::set<int>> queue_nodes;
std::unordered_map<int, std::set<int>> queue_subs;
std::set<int> live_queues;
std::set<int> live_merged_queues;
// Make trivial queues.
for (int i = 0; i < NUM_NODES; i++) {
int name = 10000 + i;
prios[i] = prio_distribution(rng);
queues[name] = std::unique_ptr<Queue>(new Queue(name));
queues[name]->insert(&nodes[i], prios[i], i);
queue_nodes[name].insert(i);
live_queues.insert(name);
}
// Run modifications.
for (int i = 0; i < 4000; i++) {
// Find top-level queue of few nodes.
for (int k = 0; k < 200; k++) {
int t = node_distribution(rng);
int name = nodes[t].find();
BOOST_TEST(queue_nodes[name].count(t) == 1);
}
// Change priority of a few nodes.
for (int k = 0; k < 10; k++) {
int t = node_distribution(rng);
int name = nodes[t].find();
BOOST_TEST(live_queues.count(name) == 1);
BOOST_TEST(queue_nodes[name].count(t) == 1);
BOOST_TEST(nodes[t].prio() == prios[t]);
double p = prio_distribution(rng);
prios[t] = p;
nodes[t].set_prio(p);
for (int tt : queue_nodes[name]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[name]->min_prio() == p);
BOOST_TEST(queues[name]->min_elem() == t);
}
if (live_queues.size() > 100) {
// Choose number of queues to merge between 2 and 100.
int k = std::uniform_int_distribution<>(2, 100)(rng);
k = std::uniform_int_distribution<>(2, k)(rng);
// Choose queues to merge.
std::vector<int> live_queue_vec(live_queues.begin(),
live_queues.end());
std::vector<int> sub_names;
std::vector<Queue*> sub_queues;
for (int ki = 0; ki < k; ki++) {
int t = std::uniform_int_distribution<>(
0, live_queue_vec.size() - 1)(rng);
int name = live_queue_vec[t];
sub_names.push_back(name);
sub_queues.push_back(queues[name].get());
live_queue_vec[t] = live_queue_vec.back();
live_queue_vec.pop_back();
live_queues.erase(name);
live_merged_queues.erase(name);
}
// Create new queue by merging selected queues.
int name = 20000 + i;
queues[name] = std::unique_ptr<Queue>(new Queue(name));
queues[name]->merge(sub_queues.begin(), sub_queues.end());
for (int nn : sub_names) {
queue_nodes[name].insert(queue_nodes[nn].begin(),
queue_nodes[nn].end());
}
queue_subs[name].insert(sub_names.begin(), sub_names.end());
live_queues.insert(name);
live_merged_queues.insert(name);
// Check new queue.
{
double p = 2;
int t = 0;
for (int tt : queue_nodes[name]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[name]->min_prio() == p);
BOOST_TEST(queues[name]->min_elem() == t);
}
}
if ((live_queues.size() <= 100)
|| (live_merged_queues.size() >= 100)) {
// Choose a random queue to split.
std::vector<int> live_queue_vec(live_merged_queues.begin(),
live_merged_queues.end());
int k = std::uniform_int_distribution<>(
0, live_queue_vec.size() - 1)(rng);
int name = live_queue_vec[k];
queues[name]->split();
for (int nn : queue_subs[name]) {
// Check reconstructed sub-queue.
double p = 2;
int t = 0;
for (int tt : queue_nodes[nn]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[nn]->min_prio() == p);
BOOST_TEST(queues[nn]->min_elem() == t);
// Mark sub-queue as live.
live_queues.insert(nn);
if (queue_subs.count(nn) == 1) {
live_merged_queues.insert(nn);
}
}
live_merged_queues.erase(name);
live_queues.erase(name);
queues.erase(name);
queue_nodes.erase(name);
queue_subs.erase(name);
}
}
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -13,7 +13,7 @@
#define BOOST_TEST_MODULE mwmatching
#include <boost/test/unit_test.hpp>
#include "mwmatching.h"
#include "mwmatching.hpp"
using EdgeVectorLong = std::vector<mwmatching::Edge<long>>;
@ -327,19 +327,40 @@ BOOST_AUTO_TEST_CASE(test51_augment_blossom_nested)
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test61_unsigned)
BOOST_AUTO_TEST_CASE(test52_augment_blossom_nested2)
{
std::vector<mwmatching::Edge<unsigned int>> edges = {{1, 2, 5}, {2, 3, 11}, {3, 4, 5}};
Matching expect = {{2, 3}};
/*
*
* [4]--15 19--[2]
* | \ / |
* 16 [1] 21
* | / \ |
* [5]--17 19--[3]
* |
* 10
* |
* [6]
*/
EdgeVectorLong edges = {
{1, 2, 19}, {1, 3, 19}, {1, 4, 15}, {1, 5, 17}, {2, 3, 21}, {4, 5, 16}, {5, 6, 10}};
Matching expect = {{1, 4}, {2, 3}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test62_unsigned2)
BOOST_AUTO_TEST_CASE(test61_triangles_n9)
{
std::vector<mwmatching::Edge<unsigned int>> edges = {
{1, 2, 8}, {1, 3, 9}, {2, 3, 10}, {3, 4, 7}, {1, 6, 5}, {4, 5, 6}};
Matching expect = {{2, 3}, {1, 6}, {4, 5}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
/*
* t.f 9 nodes
*
* [1]------[4] [7]
* | \ | \ | \
* | [3] | [6] | [9]
* | / | / | /
* [2] [5]------[8]
*/
EdgeVectorLong edges = {
{1, 2, 1}, {1, 3, 1}, {2, 3, 1}, {4, 5, 1}, {4, 6, 1}, {5, 6, 1}, {7, 8, 1}, {7, 9, 1}, {8, 9, 1}, {1, 4, 1}, {5, 8, 1}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges).size() == 4);
}
BOOST_AUTO_TEST_CASE(test_fail_bad_input)
@ -749,3 +770,72 @@ BOOST_AUTO_TEST_CASE(test_blossom_not_full)
}
BOOST_AUTO_TEST_SUITE_END()
/* ********** Test graphs that force big values for dual / slack ********** */
BOOST_AUTO_TEST_SUITE(test_value_range)
BOOST_AUTO_TEST_CASE(test_big_blossom_dual)
{
/*
* Force modified blossom dual close to 2*maxweight.
*
* [3]
* / \
* W-4/ \W
* 7 / \
* [1]-----[2]-----[4]
* | W-4
* 5|
* | 1
* [5]-----[6]
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 7}, {2, 3, w - 4}, {2, 4, w - 4}, {2, 5, 5}, {3, 4, w}, {5, 6, 1}};
Matching expect = {{1, 2}, {3, 4}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test_negative_blossom_dual)
{
/*
* Force modified blossom dual close to -maxweight.
*
* [3]
* / \
* 5/ \7
* 1 / \
* [1]-----[2]-----[4]
* | 5
* 1|
* | W
* [5]-----[6]
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 1}, {2, 3, 5}, {2, 4, 5}, {2, 5, 1}, {3, 4, 7}, {5, 6, w}};
Matching expect = {{1, 2}, {3, 4}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test_big_edge_slack)
{
/*
* Force modified edge slack close to 3*maxweight.
*
* 6 W W-2 5
* [1]-----[2]-----[3]-----[4]-----[5]
* | |
* |1 |1
* | |
* [6]-----[7]-----[8]-----[9]-----[10]
* 6 W W-2 5
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 6}, {1, 6, 1}, {2, 3, w}, {3, 4, w - 2}, {3, 8, 1}, {4, 5, 5},
{6, 7, 6}, {7, 8, w}, {8, 9, w - 2}, {9, 10, 5}};
Matching expect = {{1, 6}, {2, 3}, {4, 5}, {7, 8}, {9, 10}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_SUITE_END()

252
cpp/test_priority_queue.cpp Normal file
View File

@ -0,0 +1,252 @@
/*
* Unit tests for PriorityQueue data structure.
*
* Depends on the Boost.Test unit test framework.
* Tested with Boost v1.74, available from https://www.boost.org/
*/
#include <algorithm>
#include <climits>
#include <memory>
#include <random>
#include <string>
#include <tuple>
#include <vector>
#define BOOST_TEST_MODULE datastruct
#include <boost/test/unit_test.hpp>
#include "priority_queue.hpp"
BOOST_AUTO_TEST_SUITE(test_priority_queue)
BOOST_AUTO_TEST_CASE(test_empty)
{
using Queue = mwmatching::PriorityQueue<int, std::string>;
Queue q;
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_single)
{
using Queue = mwmatching::PriorityQueue<int, std::string>;
Queue q;
Queue::Node n1;
BOOST_TEST(n1.valid() == false);
q.insert(&n1, 5, "a");
BOOST_TEST(n1.valid() == true);
BOOST_TEST(n1.prio() == 5);
BOOST_TEST(q.empty() == false);
BOOST_TEST(q.min_prio() == 5);
BOOST_TEST(q.min_elem() == std::string("a"));
q.set_prio(&n1, 3);
BOOST_TEST(n1.prio() == 3);
BOOST_TEST(q.min_prio() == 3);
BOOST_TEST(q.min_elem() == std::string("a"));
q.remove(&n1);
BOOST_TEST(n1.valid() == false);
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_simple)
{
using Queue = mwmatching::PriorityQueue<int, char>;
Queue q;
Queue::Node nodes[10];
q.insert(&nodes[0], 9, 'a');
BOOST_TEST(q.min_prio() == 9);
BOOST_TEST(q.min_elem() == 'a');
q.insert(&nodes[1], 4, 'b');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[2], 7, 'c');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[3], 5, 'd');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[4], 8, 'e');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[5], 6, 'f');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[6], 4, 'g');
q.insert(&nodes[7], 5, 'h');
q.insert(&nodes[8], 2, 'i');
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.insert(&nodes[9], 6, 'j');
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.set_prio(&nodes[2], 1);
BOOST_TEST(q.min_prio() == 1);
BOOST_TEST(q.min_elem() == 'c');
q.set_prio(&nodes[4], 3);
BOOST_TEST(q.min_prio() == 1);
BOOST_TEST(q.min_elem() == 'c');
q.remove(&nodes[2]);
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.remove(&nodes[8]);
BOOST_TEST(q.min_prio() == 3);
BOOST_TEST(q.min_elem() == 'e');
q.remove(&nodes[4]);
q.remove(&nodes[1]);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'g');
q.remove(&nodes[3]);
q.remove(&nodes[9]);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'g');
q.remove(&nodes[6]);
BOOST_TEST(q.min_prio() == 5);
BOOST_TEST(q.min_elem() == 'h');
BOOST_TEST(q.empty() == false);
q.clear();
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_increase_prio)
{
using Queue = mwmatching::PriorityQueue<int, char>;
Queue q;
Queue::Node n1;
q.insert(&n1, 5, 'a');
q.set_prio(&n1, 8);
BOOST_TEST(n1.prio() == 8);
BOOST_TEST(q.min_prio() == 8);
q.clear();
Queue::Node n2, n3, n4;
q.insert(&n1, 9, 'A');
q.insert(&n2, 4, 'b');
q.insert(&n3, 7, 'c');
q.insert(&n4, 5, 'd');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.set_prio(&n2, 8);
BOOST_TEST(n2.prio() == 8);
BOOST_TEST(q.min_elem() == 'd');
BOOST_TEST(q.min_prio() == 5);
q.set_prio(&n3, 10);
BOOST_TEST(n3.prio() == 10);
BOOST_TEST(q.min_elem() == 'd');
q.remove(&n4);
BOOST_TEST(q.min_elem() == 'b');
q.remove(&n2);
BOOST_TEST(q.min_prio() == 9);
BOOST_TEST(q.min_elem() == 'A');
q.remove(&n1);
BOOST_TEST(q.min_elem() == 'c');
BOOST_TEST(q.min_prio() == 10);
q.remove(&n3);
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_random)
{
using Queue = mwmatching::PriorityQueue<int, int>;
Queue q;
const int num_elem = 1000;
std::vector<std::tuple<std::unique_ptr<Queue::Node>, int, int>> elems;
int next_data = 0;
std::mt19937 rng(34567);
auto check = [&q,&elems]() {
int min_prio = q.min_prio();
int min_data = q.min_elem();
int best_prio = INT_MAX;
bool found = false;
for (const auto& v : elems) {
int this_prio = std::get<1>(v);
int this_data = std::get<2>(v);
best_prio = std::min(best_prio, this_prio);
if ((this_prio == min_prio) && (this_data == min_data)) {
found = true;
}
}
BOOST_TEST(found == true);
BOOST_TEST(min_prio == best_prio);
};
for (int i = 0; i < num_elem; ++i) {
++next_data;
int prio = std::uniform_int_distribution<>(0, 1000000)(rng);
std::unique_ptr<Queue::Node> nptr(new Queue::Node);
q.insert(nptr.get(), prio, next_data);
elems.push_back(std::make_tuple(std::move(nptr), prio, next_data));
check();
}
for (int i = 0; i < 10000; ++i) {
int p = std::uniform_int_distribution<>(0, num_elem - 1)(rng);
Queue::Node* node = std::get<0>(elems[p]).get();
int prio = std::get<1>(elems[p]);
prio = std::uniform_int_distribution<>(0, 1000000)(rng);
q.set_prio(node, prio);
std::get<1>(elems[p]) = prio;
check();
p = std::uniform_int_distribution<>(0, num_elem - 1)(rng);
node = std::get<0>(elems[p]).get();
q.remove(node);
elems.erase(elems.begin() + p);
check();
++next_data;
prio = std::uniform_int_distribution<>(0, 1000000)(rng);
std::unique_ptr<Queue::Node> nptr(new Queue::Node);
q.insert(nptr.get(), prio, next_data);
elems.push_back(std::make_tuple(std::move(nptr), prio, next_data));
check();
}
for (int i = 0; i < num_elem; ++i) {
int p = std::uniform_int_distribution<>(0, num_elem - 1 - i)(rng);
Queue::Node* node = std::get<0>(elems[p]).get();
q.remove(node);
elems.erase(elems.begin() + p);
if (! elems.empty()) {
check();
}
}
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -13,6 +13,7 @@ disable=consider-using-in,
too-many-lines,
too-many-locals,
too-many-nested-blocks,
too-many-positional-arguments,
too-many-public-methods,
too-many-return-statements,
too-many-statements,

View File

@ -1688,24 +1688,16 @@ class MatchingContext:
(p, q, _w) = edges[e]
y = p if p != x else q
# Consider the edge between vertices "x" and "y".
# Update delta2 or delta3 tracking accordingly.
#
# We don't actually use the edge right now to extend
# the alternating tree or create a blossom or alternating path.
# If appropriate, insert this edge into delta2 or delta3
# tracking.
# Insert this edge into delta2 or delta3 tracking
# Try to pull this edge into an alternating tree.
# Ignore edges that are internal to a blossom.
by = self.top_level_blossom(y)
if bx is by:
continue
if by.label == LABEL_S:
# Edge between S-vertices.
self.delta3_add_edge(e)
else:
# Edge to T-vertex or unlabeled vertex.
self.delta2_add_edge(e, y, by)
self.scan_queue.clear()

View File

@ -9,8 +9,11 @@ echo
g++ --version
echo
make -C cpp run_matching test_mwmatching
make -C cpp clean
make -C cpp run_matching test_mwmatching test_concatenable_queue test_priority_queue
cpp/test_mwmatching
cpp/test_concatenable_queue
cpp/test_priority_queue
echo
echo ">> Running test graphs"

View File

@ -10,6 +10,7 @@ env_list =
py310
py311
py312
py313
pypy3
[testenv]