1
0
Fork 0

Compare commits

..

76 Commits

Author SHA1 Message Date
Joris van Rantwijk 8eb6b77523 Update README, section repository structure 2024-11-26 20:07:23 +01:00
Joris van Rantwijk 43502512ee Update README wrt C++ run time 2024-11-26 18:50:44 +01:00
Joris van Rantwijk d4e86e9dcc make clean at start of C++ test script 2024-11-26 18:48:26 +01:00
Joris van Rantwijk 53e5ec618e gitignore compiled C++ code 2024-11-26 11:18:14 +01:00
Joris van Rantwijk 3914ea15a7 Add Python 3.13 in tox config 2024-11-26 11:17:37 +01:00
Joris van Rantwijk d539e5cfbb Add C++ testcases from Python 2024-11-24 14:59:58 +01:00
Joris van Rantwijk f652a08d43 Rename mwmatching.h to mwmatching.hpp 2024-11-24 14:25:43 +01:00
Joris van Rantwijk 0f18b7b05a Split datastruct.h
Split into separate files concatenable_queue.hpp and priority_queue.hpp.
Move classes into namespace.
Separate unit testse.
2024-11-24 14:22:26 +01:00
Joris van Rantwijk 087799cdca Minor comment cleanup 2024-11-24 13:59:28 +01:00
Joris van Rantwijk 02917b2caf Minor code and comment cleanups 2024-11-23 22:59:40 +01:00
Joris van Rantwijk f0773eb84b Clean up code formatting 2024-11-22 23:29:10 +01:00
Joris van Rantwijk 1e6f2a11c4 Simplify expand_t_blossom() 2024-11-22 20:12:25 +01:00
Joris van Rantwijk b5ccbdeda4 Remove expand_unlabeled_blossom() 2024-11-21 21:46:39 +01:00
Joris van Rantwijk 3815335a9f Keep alternating trees between stages in C++ 2024-11-20 21:10:14 +01:00
Joris van Rantwijk 082397ef80 Minor cleanup 2024-11-19 21:25:05 +01:00
Joris van Rantwijk ab691813b3 The C++ code should now run in O(n*m*log(n)) 2024-11-17 21:19:15 +01:00
Joris van Rantwijk 105679c986 Use iterator to delete expanded blossom 2024-11-17 20:46:58 +01:00
Joris van Rantwijk 7683f891d5 Use priority queues for delta2 2024-11-17 19:18:57 +01:00
Joris van Rantwijk 22251e64e8 Maintain concatenable queue for each blossom 2024-11-17 12:02:40 +01:00
Joris van Rantwijk 5b5c107a5c Initialize ConcatenableQueue name in constructor 2024-11-16 23:41:29 +01:00
Joris van Rantwijk e8020f3e58 Use priority queue for delta4 2024-11-16 20:23:51 +01:00
Joris van Rantwijk 2271df1897 Lazy updates of blossom duals 2024-11-16 14:23:13 +01:00
Joris van Rantwijk 228da75495 Lazy updates of vertex duals 2024-11-16 10:32:35 +01:00
Joris van Rantwijk 5500750c13 Reorganize code that handles labeling 2024-11-14 23:31:11 +01:00
Joris van Rantwijk 39eaea451e Minor code rearrangement 2024-11-10 00:10:26 +01:00
Joris van Rantwijk 7ea1562cc7 Use tight edges only during delta steps 2024-11-09 21:39:52 +01:00
Joris van Rantwijk 55a98238aa Implement heap-based tracking for delta3 2024-11-09 00:11:07 +01:00
Joris van Rantwijk b17ca1a364 Require signed type for edge weight 2024-11-08 20:30:53 +01:00
Joris van Rantwijk 67ca294840 Rework data structures 2024-11-08 18:38:20 +01:00
Joris van Rantwijk efb238ff8e C++ datastructures for O(n*m*log(n)) 2024-11-02 09:43:33 +01:00
Joris van Rantwijk e103a493fc Update Algorithm.md 2024-07-28 11:38:05 +02:00
Joris van Rantwijk 4670cf1dca Add testcases to force big values for dual/slack 2024-07-28 11:38:05 +02:00
Joris van Rantwijk c731c32473 Separate function top_level_blossom() 2024-07-21 15:32:41 +02:00
Joris van Rantwijk e8490010d6 Implement ConcatenableQueue as 2-3 tree 2024-07-21 15:32:41 +02:00
Joris van Rantwijk dc8cdae225 Minor simplification in UnionFindQueue 2024-07-21 15:32:41 +02:00
Joris van Rantwijk e2f5b63a01 Fix README 2024-07-11 21:28:41 +02:00
Joris van Rantwijk 6bf04df77b Update README 2024-07-11 21:27:01 +02:00
Joris van Rantwijk 99f8a2d822 Add benchmark script 2024-07-10 21:01:21 +02:00
Joris van Rantwijk ed70402310 Separate C++ test script 2024-07-10 20:52:59 +02:00
Joris van Rantwijk 54f59db753 Add tox.ini for Python testing 2024-07-10 20:19:12 +02:00
Joris van Rantwijk c58374e6fb Remove debug checks of alternating tree 2024-07-09 21:18:53 +02:00
Joris van Rantwijk 658a393bb8 Test script for Python code 2024-07-09 21:10:38 +02:00
Joris van Rantwijk c19fa9a76c Add pyproject.toml 2024-07-09 21:10:38 +02:00
Joris van Rantwijk d3475834ab Add from __future__ import annotations
This makes the code work on Python versions 3.7 and 3.8.
2024-07-09 21:10:38 +02:00
Joris van Rantwijk 147640329f Restructure Python code as package 2024-07-09 21:10:38 +02:00
Joris van Rantwijk f2e8ca1357 Remove redundant type annotations "int|float" 2024-07-09 21:10:38 +02:00
Joris van Rantwijk b2d4de41f9 Add __slots__ in datastruct.py
It does not make a clear difference for performance.
But it should at least reduce memory usage a bit.
2024-07-09 21:10:38 +02:00
Joris van Rantwijk d2debb6d6f Minor changes to docstrings 2024-07-09 21:10:38 +02:00
Joris van Rantwijk bbe19a6798 Run all unittests in run_checks.sh 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 50ef772271 Improve test coverage 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 6a75ffaf63 Avoid leaking reference cycles 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 4c6115fb2f Improve comments and docstrings 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 0e76e6472b Minor cleanup in scanning and delta steps 2024-07-09 21:10:38 +02:00
Joris van Rantwijk f35a640e43 Clean up management of the alternating tree 2024-07-09 21:10:38 +02:00
Joris van Rantwijk b960a85b6c Clean up magagement of blossom labels 2024-07-09 21:10:38 +02:00
Joris van Rantwijk f8c6b99842 Clean up least-slack edge tracking 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 1a98624f2b Solve slow maintanance of blossom list 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 61524990d7 Keep alternating trees between stages
Delete only the trees that are involved in an augmenting path.
Keep the other trees and reuse them in the next stage.

This gives a big speedup on many cases such as random graphs.
The code is a mess, needs to be cleaned up.
2024-07-09 21:10:38 +02:00
Joris van Rantwijk 73641d7b70 Add method PriorityQueue.increase_prio 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 0675230692 Code style cleanups 2024-07-09 21:10:38 +02:00
Joris van Rantwijk de30ac3c5e Track blossoms in each alternating tree 2024-07-09 21:10:38 +02:00
Joris van Rantwijk aab2acd78e Remove redundant clearing of scan queue 2024-07-09 21:10:38 +02:00
Joris van Rantwijk e9baa88c70 Fix bug in delta2 tracking 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 73479532ac Implement scan queue as a list instead of deque 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 04b6908449 Do not check edge slack during scan
Tight edges are not used immediately during the scan.
Just like other edges, tight edges are tracked in priority queues
and are used later through a zero-delta step.

This simplifies slack calculations.
2024-07-09 21:10:38 +02:00
Joris van Rantwijk 3a77749425 Simplify slack handling in delta2 tracking 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 9ee26584ab Use UnionFind to find top-level blossom of vertex
The run time should now be O(n*m*log(n))
2024-07-09 21:10:38 +02:00
Joris van Rantwijk 225311dae0 Implement heap-based tracking for delta2 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 7cc1666cf2 Lazy delta updates of T-vertex duals 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 6318de3b1f Lazy delta updates of T-blossom duals 2024-07-09 21:10:38 +02:00
Joris van Rantwijk b2e055b357 Lazy delta updates of S-blossom duals 2024-07-09 21:10:38 +02:00
Joris van Rantwijk de03796d99 Lazy delta updates of S-vertex duals 2024-07-09 21:10:38 +02:00
Joris van Rantwijk a23c38eb70 Implement heap-based tracking for delta4 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 13b6b76d47 Implement heap-based edge tracking for delta3 2024-07-09 21:10:38 +02:00
Joris van Rantwijk 91d4afb271 Clean up redundant type annotations "int|float" 2024-07-09 21:10:00 +02:00
Joris van Rantwijk c8a3f7f684 Datastructures for O(n*m*log(n)) algorithm 2024-05-25 11:50:07 +02:00
31 changed files with 5753 additions and 1702 deletions

2
.gitignore vendored
View File

@ -2,6 +2,8 @@ __pycache__/
.coverage
cpp/test_mwmatching
cpp/test_concatenable_queue
cpp/test_priority_queue
cpp/run_matching
cpp/run_matching_dbg
tests/lemon/lemon_matching

View File

@ -1,43 +1,74 @@
# Maximum Weighted Matching
This repository contains a Python 3 implementation of maximum weighted matching in general graphs.
This repository contains implementations of maximum weighted matching for general graphs.
In graph theory, a _matching_ is a subset of edges that does not use any vertex more than once.
For an edge-weighted graph, a _maximum weight matching_ is a matching that achieves
the largest possible sum of weights of matched edges.
The code in this repository is based on a variant of the blossom algorithm that runs in
_O(n<sup>3</sup>)_ steps.
_O(n m log n)_ steps.
See the file [Algorithm.md](doc/Algorithm.md) for a detailed description.
You may find this repository useful if ...
- you want a stand-alone, pure Python module that calculates maximum weight matchings
with reasonable efficiency;
- or you want to play around with a maximum weight matching algorithm to learn how it works.
## Python
This repository is probably not the best place if ...
The folder [python/](python/) contains a Python 3 package `mwmatching` that implements
maximum weighted matching.
The Python code is self-contained -- it has no dependencies outside the standard library.
- you need a very fast routine that quickly matches large graphs (more than ~ 1000 vertices).
In that case I recommend [LEMON](http://lemon.cs.elte.hu/trac/lemon),
a C++ library that provides a blazingly fast implementation.
- or you want a high quality Python package that provides abstract graph data structures
and graph algorithms.
In that case I recommend [NetworkX](https://networkx.org/).
- or you are only interested in bipartite graphs.
There are simpler and faster algorithms for matching bipartite graphs.
To use the package, set your `PYTHONPATH` to the location of the package `mwmatching`.
Alternatively, you can install the package into your Python environment as follows:
```bash
cd python
pip install .
```
Using the package is easy.
You describe the input graph by listing its edges.
Each edge is represented as a tuple of vertex indices and the weight of the edge.
The example below finds a matching in a graph with 5 vertices and 5 edges.
The maximum weight matching contains two edges and has total weight 11.
```python
from mwmatching import maximum_weight_matching
edges = [(0, 1, 3), (1, 2, 8), (1, 4, 6), (2, 3, 5), (2, 4, 7)]
matching = maximum_weight_matching(edges)
print(matching) # prints [(1, 4), (2, 3)]
```
## C++
The folder [cpp/](cpp/) contains a header-only C++ implementation of maximum weighted matching.
The C++ code is self-contained and can easily be linked into an application.
It is also reasonably efficient.
For serious use cases, [LEMON](https://lemon.cs.elte.hu/trac/lemon) may be a better choice.
LEMON is a C++ library that provides a very fast and robust implementation of
maximum weighted matching and many other graph algorithms.
To my knowledge, it is the only free software library that provides a high-quality
matching algorithm.
## Repository structure
```
python/
mwmatching.py : Python implementation of maximum weight matching
test_mwmatching.py : Unit tests
mwmatching/ : Python package for maximum weight matching
__init__.py
algorithm.py : Algorithm implementation
datastruct.py : Internal data structures
tests/
test_algorithm : Unit tests for the algorithm
test_datastruct.py : Unit tests for data structures
run_matching.py : Command-line program to run the matching algorithm
cpp/
mwmatching.h : C++ implementation of maximum weight matching
mwmatching.hpp : C++ implementation of maximum weight matching
concatenable_queue.hpp : Data structure used by matching algorithm
priority_queue.hpp : Data structure used by matching algorithm
test_mwmatching.cpp : Unit tests
run_matching.cpp : Command-line program to run the matching algorithm
@ -76,6 +107,11 @@ My implementation follows the description of the algorithm as it appears in the
However, earlier versions of the algorithm were invented and improved by several other scientists.
See the file [Algorithm.md](doc/Algorithm.md) for links to the most important papers.
I used some ideas from the source code of the `MaxWeightedMatching` class in
[LEMON](https://lemon.cs.elto.hu/trac/lemon):
the technique to implement lazy updates of vertex dual variables,
and the approach to re-use alternating trees after augmenting the matching.
I used Fortran programs `hardcard.f`, `t.f` and `tt.f` by R. B. Mattingly and N. Ritchey
to generate test graphs.
These programs are part of the DIMACS Network Flows and Matching implementation challenge.
@ -83,7 +119,7 @@ They can be found in the
[DIMACS Netflow archive](http://archive.dimacs.rutgers.edu/pub/netflow/).
To check the correctness of my results, I used other maximum weight matching solvers:
the `MaxWeightedMatching` module in [LEMON](http://lemon.cs.elte.hu/trac/lemon),
the `MaxWeightedMatching` module in LEMON,
and the program
[`wmatch`](http://archive.dimacs.rutgers.edu/pub/netflow/matching/weighted/solver-1/)
by Edward Rothberg.
@ -94,7 +130,7 @@ by Edward Rothberg.
The following license applies to the software in this repository, excluding the folder `doc`.
This license is sometimes called the MIT License or the Expat License:
> Copyright (c) 2023 Joris van Rantwijk
> Copyright (c) 2023-2024 Joris van Rantwijk
>
> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
>

View File

@ -6,22 +6,34 @@ CXXFLAGS = -std=c++11 -Wall -Wextra $(OPTFLAGS) $(DBGFLAGS)
LIB_BOOST_TEST = -l:libboost_unit_test_framework.a
.PHONY: all
all: run_matching run_matching_dbg test_mwmatching
all: run_matching run_matching_dbg test_mwmatching test_concatenable_queue test_priority_queue
run_matching: run_matching.cpp mwmatching.h
run_matching: run_matching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $<
run_matching_dbg: OPTFLAGS = -Og
run_matching_dbg: DBGFLAGS = -g -fsanitize=address -fsanitize=undefined
run_matching_dbg: run_matching.cpp mwmatching.h
run_matching_dbg: run_matching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $<
test_mwmatching: OPTFLAGS = -O1
test_mwmatching: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_mwmatching: test_mwmatching.cpp mwmatching.h
test_mwmatching: test_mwmatching.cpp mwmatching.hpp concatenable_queue.hpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
test_concatenable_queue: OPTFLAGS = -O1
test_concatenable_queue: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_concatenable_queue: test_concatenable_queue.cpp concatenable_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
test_priority_queue: OPTFLAGS = -O1
test_priority_queue: DBGFLAGS = -fsanitize=address -fsanitize=undefined
test_priority_queue: test_priority_queue.cpp priority_queue.hpp
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $(LDFLAGS) -o $@ $< $(LIB_BOOST_TEST)
.PHONY: clean
clean:
$(RM) run_matching run_matching_dbg test_mwmatching
$(RM) run_matching run_matching_dbg
$(RM) test_mwmatching
$(RM) test_concatenable_queue test_priority_queue

841
cpp/concatenable_queue.hpp Normal file
View File

@ -0,0 +1,841 @@
/**
* Concatenable queue data structure.
*/
#ifndef MWMATCHING_CONCATENABLE_QUEUE_H_
#define MWMATCHING_CONCATENABLE_QUEUE_H_
#include <algorithm>
#include <cassert>
#include <tuple>
namespace mwmatching {
/**
* Priority queue supporting efficient merge and split operations.
*
* Conceptually, this is a combination of a disjoint set and a priority queue.
* Each queue has a "name".
* Each element has associated "data".
* Each element has a priority.
* Each element is contained in at most one queue at any time.
*
* The following operations can be done efficiently:
* - Find the name of the queue that contains a given element.
* - Change the priority of a given element.
* - Find the element with lowest priority in a given queue.
* - Merge two or more queues.
* - Undo a previous merge step.
*
* A ConcatenableQueue instance may be destructed if it is empty and not
* currently merged into a larger queue. Alternatively, a group of related
* ConcatenableQueue instances and their Node instances may be destructed
* together, even if non-empty. In this case, the objects may be destructed
* in any order. No other interactions with the objects are allowed once
* destruction has started.
*
* This data structure is implemented as an AVL tree, with minimum-priority
* tracking added to it.
* See also
* https://en.wikipedia.org/wiki/Avl_tree
* and
* G. Blelloch, D. Ferizovic, Y. Sun, Parallel Ordered Sets Using Join,
* https://arxiv.org/abs/1602.02120
*/
template <typename PrioType,
typename NameType,
typename DataType>
class ConcatenableQueue
{
public:
/**
* A Node instance represents an element in a concatenable queue.
*
* A Node instance must remain valid while it is contained in a queue.
* The containing queue holds a pointer to the Node.
*
* A Node instance may be destructed if it is not contained in any queue.
* Alternatively, a Node instance may be destructed just before or after
* destructing the containing queue. In this case, no intermediate
* interactions with the node or queue are allowed.
*/
class Node
{
public:
/** Construct an unused node, not yet contained in any queue. */
Node()
: owner_(nullptr)
, parent_(nullptr)
, left_child_(nullptr)
, right_child_(nullptr)
, height_(0)
{ }
// Prevent copying.
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
/**
* Return the name of the queue that contains this element.
*
* The node must be contained in a queue.
* This function takes time O(log(n)).
*/
NameType find() const
{
const Node* node = this;
while (node->parent_) {
node = node->parent_;
}
assert(node->owner_);
return node->owner_->name();
}
/**
* Return the priority of this element.
*
* The node must be contained in a queue.
* This function takes time O(1).
*/
PrioType prio() const
{
assert(height_ != 0);
return prio_;
}
/**
* Change the priority of this element.
*
* The node must be contained in a queue.
* This function takes time O(log(n)).
*/
void set_prio(PrioType new_prio)
{
assert(height_ != 0);
prio_ = new_prio;
Node* node = this;
while (node) {
PrioType min_prio = node->prio_;
DataType min_data = node->data_;
for (Node* child : { node->left_child_,
node->right_child_ }) {
if (child && child->min_prio_ < min_prio) {
min_prio = child->min_prio_;
min_data = child->min_data_;
}
}
node->min_prio_ = min_prio;
node->min_data_ = min_data;
node = node->parent_;
}
}
private:
PrioType prio_;
DataType data_;
PrioType min_prio_;
DataType min_data_;
ConcatenableQueue* owner_;
Node* parent_;
Node* left_child_;
Node* right_child_;
unsigned int height_;
friend class ConcatenableQueue;
};
/** Construct an empty queue. */
explicit ConcatenableQueue(const NameType& name)
: name_(name)
, tree_(nullptr)
, first_node_(nullptr)
, first_subqueue_(nullptr)
, next_subqueue_(nullptr)
{ }
// Prevent copying.
ConcatenableQueue(const ConcatenableQueue&) = delete;
ConcatenableQueue& operator=(const ConcatenableQueue&) = delete;
/** Return the name of this queue. */
NameType name() const
{
return name_;
}
/**
* Insert the specified Node into the queue.
*
* The Node instance must be unused (not yet contained in any queue).
*
* The queue must be empty. Only one element can be inserted into
* a queue in this way. Larger queues can only result from merging.
*
* The queue stores a pointer to the Node instance. The Node instance must
* remain valid for as long as it is contained in any queue.
*
* This function takes time O(1).
*/
void insert(Node* node, PrioType prio, const DataType& data)
{
assert(! tree_);
assert(! first_node_);
assert(node->height_ == 0);
assert(! node->parent_);
assert(! node->left_child_);
assert(! node->right_child_);
node->prio_ = prio;
node->data_ = data;
node->min_prio_ = prio;
node->min_data_ = data;
node->owner_ = this;
node->height_ = 1;
tree_ = node;
first_node_ = node;
}
/**
* Return the minimum priority of any element in the queue.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
PrioType min_prio() const
{
assert(tree_);
return tree_->min_prio_;
}
/**
* Return the element with minimum priority.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
DataType min_elem() const
{
assert(tree_);
return tree_->min_data_;
}
/**
* Merge the specified queues.
*
* This queue instance must inititially be empty.
* All specified sub-queues must initially be non-empty.
*
* This function removes all elements from the specified sub-queues
* and adds them to this queue.
*
* After merging, this queue retains references to the sub-queues.
* These may be used later to split (undo the merge step).
*
* This function takes time O(n_sub_queues * log(n)).
*/
template <typename QueueIterator>
void merge(QueueIterator sub_queues_begin, QueueIterator sub_queues_end)
{
assert(! tree_);
assert(! first_node_);
assert(sub_queues_begin != sub_queues_end);
// Pull the root node from the first sub-queue.
ConcatenableQueue* sub = *sub_queues_begin;
assert(sub->tree_);
Node* merged_tree = sub->tree_;
sub->tree_ = nullptr;
// Clear owner pointer from tree.
assert(merged_tree->owner_ == sub);
merged_tree->owner_ = nullptr;
// Copy first node to this queue.
assert(sub->first_node_);
first_node_ = sub->first_node_;
// Build linked list of sub-queues, starting with the first sub-queue.
assert(! sub->next_subqueue_);
first_subqueue_ = sub;
// Merge remaining sub-queues.
QueueIterator it = sub_queues_begin;
++it;
while (it != sub_queues_end) {
ConcatenableQueue* prev_sub = sub;
sub = *it;
// Clear owner pointer and root node from the sub-queue.
assert(sub->tree_);
assert(sub->tree_->owner_ == sub);
sub->tree_->owner_ = nullptr;
// Merge sub-queue tree into our current tree.
merged_tree = merge_tree(merged_tree, sub->tree_);
// Clear root pointer from sub-queue.
sub->tree_ = nullptr;
// Add sub-queue to linked list of sub-queues.
assert(! sub->next_subqueue_);
prev_sub->next_subqueue_ = sub;
++it;
}
// Put owner pointer in the root node of the tree.
merged_tree->owner_ = this;
tree_ = merged_tree;
}
/**
* Undo the merge step that created this queue.
*
* Remove all elements from this queue and put them back in
* the sub-queues from which they came.
*
* After splitting, this queue will be empty.
*
* This function takes time O(n_sub_queues * log(n)).
*/
void split()
{
assert(tree_);
assert(first_subqueue_);
// Clear the owner pointer from the root node.
assert(tree_->owner_ == this);
tree_->owner_ = nullptr;
Node* rtree = tree_;
ConcatenableQueue* sub = first_subqueue_;
// Repeatedly split the tree to reconstruct each sub-queue.
while (sub->next_subqueue_) {
ConcatenableQueue* next_sub = sub->next_subqueue_;
sub->next_subqueue_ = nullptr;
// Split the tree on the first node of the next sub-queue.
assert(next_sub->first_node_);
Node* ltree;
std::tie(ltree, rtree) = split_tree(next_sub->first_node_);
// Put the left half of the tree in the current sub-queue.
sub->tree_ = ltree;
ltree->owner_ = sub;
// Continue to next sub-queue.
sub = next_sub;
}
// Put the remaining part of the tree in the last sub-queue.
rtree->owner_ = sub;
sub->tree_ = rtree;
// Clean up this instance.
tree_ = nullptr;
first_node_ = nullptr;
first_subqueue_ = nullptr;
}
private:
/**
* Merge two trees and rebalance.
*
* This function takes time O(log(n)).
*/
static Node* merge_tree(Node* ltree, Node* rtree)
{
// Remove the last node from the left tree.
Node* node;
std::tie(ltree, node) = split_last_node(ltree);
// Join the trees.
return join(ltree, node, rtree);
}
/**
* Remove the last node from the tree and rebalance.
*
* This function takes time O(log(n)).
*/
static std::tuple<Node*, Node*> split_last_node(Node* tree)
{
assert(tree);
/*
* Descend down the right spine of the tree to find the last node.
*
* tree
* / \
* X
* / \
* X <-- parent
* / \
* last_node
* /
* X <-- ltree
*/
// Find last node.
Node* last_node = tree;
while (last_node->right_child_) {
last_node = last_node->right_child_;
}
// Detach its left subtree.
Node* ltree = last_node->left_child_;
last_node->left_child_ = nullptr;
if (ltree) {
ltree->parent_ = nullptr;
}
// Detach from the parent.
Node* parent = last_node->parent_;
last_node->parent_ = nullptr;
if (parent) {
parent->right_child_ = nullptr;
}
// Reconstruct along the right spine of the original tree.
while (parent) {
// Step to parent.
Node* cur = parent;
parent = cur->parent_;
// Detach from its own parent.
cur->parent_ = nullptr;
if (parent) {
parent->right_child_ = nullptr;
}
// Join the current node to the reconstructed tree.
ltree = join(cur->left_child_, cur, ltree);
}
return std::make_tuple(ltree, last_node);
}
/**
* Split a tree on a specified node.
*
* Two new trees will be constructed.
* Leaf nodes to the left of "split_node" will go to the left tree.
* Leaf nodes to the right of "split_node", and "split_node" itself,
* will go to the right tree.
*
* This function takes time O(log(n)).
*/
static std::tuple<Node*, Node*> split_tree(Node* split_node)
{
assert(split_node);
// All left-descendants of "split_node" belong in the left tree.
// Detach it from "split_node".
Node* ltree = split_node->left_child_;
split_node->left_child_ = nullptr;
if (ltree) {
ltree->parent_ = nullptr;
}
// Start with an empty right tree.
Node* rtree = nullptr;
// Start at "split_node".
// Take note of the fact that the "cut" between the two halves of
// the tree runs down its left branch, since "split_node" itself
// belongs to the right tree.
Node* node = split_node;
bool left_branch = true;
// Work upwards through the tree, assigning each node either to
// the new left tree or the new right tree.
//
// This loop runs for O(log(n)) iterations.
// Each iteration calls join() once, taking time proportional
// to the difference in height between the intermediate trees.
// The total run time of all join() calls together is O(log(n)).
while (node) {
// Detach the current node from its parent.
// Remember to which branch of the parent it was attached.
Node* parent = node->parent_;
node->parent_ = nullptr;
bool parent_left_branch = true;
if (parent) {
parent_left_branch = (parent->left_child_ == node);
if (parent_left_branch) {
parent->left_child_ = nullptr;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = nullptr;
}
}
// Join the current node and its remaining descendents either
// to the left tree or to the right tree.
if (left_branch) {
/*
* "node" belongs to the right tree.
* Join like this:
*
* (node) <--- new rtree
* / \
* (rtree) (node->right_child)
*/
assert(! node->left_child_);
rtree = join(rtree, node, node->right_child_);
} else {
/*
* "node" belongs to the left tree.
* Join like this:
*
* (node) <--- new ltree
* / \
* (node->left_child) (ltree)
*/
assert(! node->right_child_);
ltree = join(node->left_child_, node, ltree);
}
// Continue with the parent node.
node = parent;
left_branch = parent_left_branch;
}
// Done. All that remains of the old tree is the two new halves.
return std::make_tuple(ltree, rtree);
}
/** Return node height, or 0 if node == nullptr. */
static unsigned int get_node_height(const Node* node)
{
return node ? node->height_ : 0;
}
/**
* Repair the height and min-priority information of a node
* after modifying its children.
*
* After repairing a node, it is typically necessary to also repair
* its ancestors.
*/
static void repair_node(Node* node)
{
Node* lchild = node->left_child_;
Node* rchild = node->right_child_;
// Repair node height.
node->height_ = 1 + std::max(get_node_height(lchild),
get_node_height(rchild));
// Repair min-priority.
PrioType min_prio = node->prio_;
DataType min_data = node->data_;
for (Node* child : { lchild, rchild }) {
if (child && child->min_prio_ < min_prio) {
min_prio = child->min_prio_;
min_data = child->min_data_;
}
}
node->min_prio_ = min_prio;
node->min_data_ = min_data;
}
/** Rotate the subtree to the left and return the new root of the subtree. */
static Node* rotate_left(Node* node)
{
/*
* N C
* / \ / \
* A C ---> N D
* / \ / \
* B D A B
*/
Node* parent = node->parent_;
Node* new_top = node->right_child_;
assert(new_top);
Node* nb = new_top->left_child_;
node->right_child_ = nb;
if (nb) {
nb->parent_ = node;
}
new_top->left_child_ = node;
node->parent_ = new_top;
new_top->parent_ = parent;
if (parent) {
if (parent->left_child_ == node) {
parent->left_child_ = new_top;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = new_top;
}
}
repair_node(node);
repair_node(new_top);
return new_top;
}
/** Rotate the subtree to the right and return the new root of the subtree. */
static Node* rotate_right(Node* node)
{
/*
* N B
* / \ / \
* B D ---> A N
* / \ / \
* A C C D
*/
Node* parent = node->parent_;
Node* new_top = node->left_child_;
assert(new_top);
Node* nc = new_top->right_child_;
node->left_child_ = nc;
if (nc) {
nc->parent_ = node;
}
new_top->right_child_ = node;
node->parent_ = new_top;
new_top->parent_ = parent;
if (parent) {
if (parent->left_child_ == node) {
parent->left_child_ = new_top;
} else {
assert(parent->right_child_ == node);
parent->right_child_ = new_top;
}
}
repair_node(node);
repair_node(new_top);
return new_top;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The left subtree is higher than the right subtree.
*/
static Node* join_right(Node* ltree, Node* node, Node* rtree)
{
assert(ltree);
unsigned int lh = ltree->height_;
unsigned int rh = get_node_height(rtree);
assert(lh > rh + 1);
/*
* Descend down the right spine of "ltree".
* Stop at a node with compatible height, then insert "node"
* and attach "rtree".
*
* ltree
* / \
* X
* / \
* X <-- cur
* / \
* node
* / \
* X rtree
*/
// Descend to a point with compatible height.
Node* cur = ltree;
while (cur->right_child_ && (cur->right_child_->height_ > rh + 1)) {
cur = cur->right_child_;
}
// Insert "node" and "rtree".
node->left_child_ = cur->right_child_;
node->right_child_ = rtree;
if (node->left_child_) {
node->left_child_->parent_ = node;
}
if (rtree) {
rtree->parent_ = node;
}
cur->right_child_ = node;
node->parent_ = cur;
// A double rotation may be necessary.
if ((! cur->left_child_) || (cur->left_child_->height_ <= rh)) {
node = rotate_right(node);
cur = rotate_left(cur);
} else {
repair_node(node);
repair_node(cur);
}
// Ascend from "cur" to the root of the tree; repair and rebalance.
while (cur->parent_) {
cur = cur->parent_;
assert(cur->left_child_);
assert(cur->right_child_);
if (cur->left_child_->height_ + 1 < cur->right_child_->height_) {
cur = rotate_left(cur);
} else {
repair_node(cur);
}
}
return cur;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The right subtree is higher than the left subtree.
*/
static Node* join_left(Node* ltree, Node* node, Node* rtree)
{
assert(rtree);
unsigned int lh = get_node_height(ltree);
unsigned int rh = rtree->height_;
assert(lh + 1 < rh);
/*
* Descend down the left spine of "rtree".
* Stop at a node with compatible height, then insert "node"
* and attach "ltree".
*
* rtree
* / \
* X
* / \
* cur --> X
* / \
* node
* / \
* ltree X
*/
// Descend to a point with compatible height.
Node* cur = rtree;
while (cur->left_child_ && (cur->left_child_->height_ > lh + 1)) {
cur = cur->left_child_;
}
// Insert "node" and "ltree".
node->left_child_ = ltree;
node->right_child_ = cur->left_child_;
if (ltree) {
ltree->parent_ = node;
}
if (node->right_child_) {
node->right_child_->parent_ = node;
}
cur->left_child_ = node;
node->parent_ = cur;
// A double rotation may be necessary.
if ((! cur->right_child_) || (cur->right_child_->height_ <= lh)) {
node = rotate_left(node);
cur = rotate_right(cur);
} else {
repair_node(node);
repair_node(cur);
}
// Ascend from "cur" to the root of the tree; repair and rebalance.
while (cur->parent_) {
cur = cur->parent_;
assert(cur->left_child_);
assert(cur->right_child_);
if (cur->left_child_->height_ > cur->right_child_->height_ + 1) {
cur = rotate_right(cur);
} else {
repair_node(cur);
}
}
return cur;
}
/**
* Join a left subtree, middle node and right subtree together.
*
* The left or right subtree may initially be a child of the middle
* node; such links will be broken as needed.
*
* The left and right subtrees must be consistent, semi-balanced trees.
* Height and priority of the middle node may initially be inconsistent;
* this function will repair it.
*
* @return Root node of the joined tree.
*/
static Node* join(Node* ltree, Node* node, Node* rtree)
{
unsigned int lh = get_node_height(ltree);
unsigned int rh = get_node_height(rtree);
if (lh > rh + 1) {
assert(ltree);
ltree->parent_ = nullptr;
return join_right(ltree, node, rtree);
} else if (lh + 1 < rh) {
assert(rtree);
rtree->parent_ = nullptr;
return join_left(ltree, node, rtree);
} else {
/*
* Subtree heights are compatible. Just join them.
*
* node
* / \
* ltree rtree
* / \ / \
*/
node->parent_ = nullptr;
node->left_child_ = ltree;
if (ltree) {
ltree->parent_ = node;
}
node->right_child_ = rtree;
if (rtree) {
rtree->parent_ = node;
}
repair_node(node);
return node;
}
}
/** Name of this queue. */
const NameType name_;
/** Root node of the tree, or "nullptr" if the queue is empty. */
Node* tree_;
/** Left-most node that belongs to this queue. */
Node* first_node_;
/** Pointer to first sub-queue that got merged into this instance. */
ConcatenableQueue* first_subqueue_;
/** Linked list of sub-queues that were merged to build this queue. */
ConcatenableQueue* next_subqueue_;
};
} // namespace mwmatching
#endif // MWMATCHING_CONCATENABLE_QUEUE_H_

File diff suppressed because it is too large Load Diff

266
cpp/priority_queue.hpp Normal file
View File

@ -0,0 +1,266 @@
/**
* Priority queue data structure.
*/
#ifndef MWMATCHING_PRIORITY_QUEUE_H_
#define MWMATCHING_PRIORITY_QUEUE_H_
#include <cassert>
#include <limits>
#include <vector>
namespace mwmatching {
/**
* Min-priority queue implemented as a binary heap.
*
* Elements in a heap have a priority and associated "data".
*
* The following operations can be done efficiently:
* - Insert an element into the queue.
* - Remove an element from the queue.
* - Change the priority of a given element.
* - Find the element with lowest priority in the queue.
*/
template <typename PrioType,
typename DataType>
class PriorityQueue
{
public:
typedef unsigned int IndexType;
static constexpr IndexType INVALID_INDEX =
std::numeric_limits<IndexType>::max();
/**
* A Node instance represents an element in a PriorityQueue.
*
* A Node instance must remain valid while it is contained in a queue.
* The containing queue holds a pointer to the Node.
*
* A Node instance may be destructed if it is not contained in any queue.
* Alternatively, a Node instance may be destructed after its containing
* queue instance has been destructed.
*/
class Node
{
public:
/** Construct an invalid node, not contained in any queue. */
Node()
: index_(INVALID_INDEX)
{ }
// Prevent copying.
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
/** Return true if this node is contained in a queue. */
bool valid() const
{
return (index_ != INVALID_INDEX);
}
/**
* Return the priority of this node in the queue.
*
* The node must be contained in a queue.
* This function takes time O(1).
*/
PrioType prio() const
{
assert(index_ != INVALID_INDEX);
return prio_;
}
private:
IndexType index_;
PrioType prio_;
DataType data_;
friend class PriorityQueue;
};
/** Construct an empty queue. */
PriorityQueue()
{ }
// Prevent copying.
PriorityQueue(const PriorityQueue&) = delete;
PriorityQueue& operator=(const PriorityQueue&) = delete;
/**
* Remove all elements from the queue.
*
* This function takes time O(n).
*/
void clear()
{
for (Node* node : heap_) {
node->index_ = INVALID_INDEX;
}
heap_.clear();
}
/** Return true if the queue is empty. */
bool empty() const
{
return heap_.empty();
}
/**
* Return the minimum priority of any element in the queue.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
PrioType min_prio() const
{
assert(! heap_.empty());
Node* top = heap_.front();
return top->prio_;
}
/**
* Return the element with minimum priority.
*
* The queue must be non-empty.
* This function takes time O(1).
*/
DataType min_elem() const
{
assert(! heap_.empty());
Node* top = heap_.front();
return top->data_;
}
/**
* Insert the given node into the queue with associated data.
*
* The node must not currently be contained in any queue.
* This function takes amortized time O(log(n)).
*/
void insert(Node* node, PrioType prio, const DataType& data)
{
assert(node->index_ == INVALID_INDEX);
node->index_ = heap_.size();
node->prio_ = prio;
node->data_ = data;
heap_.push_back(node);
sift_up(node->index_);
}
/**
* Update priority of an existing node.
*
* This function takes time O(log(n)).
*/
void set_prio(Node* node, PrioType prio)
{
IndexType index = node->index_;
assert(index != INVALID_INDEX);
assert(heap_[index] == node);
PrioType prev_prio = node->prio_;
node->prio_ = prio;
if (prio < prev_prio) {
sift_up(index);
} else if (prio > prev_prio) {
sift_down(index);
}
}
/**
* Remove the specified element from the queue.
*
* This function takes time O(log(n)).
*/
void remove(Node* node)
{
IndexType index = node->index_;
assert(index != INVALID_INDEX);
assert(heap_[index] == node);
node->index_ = INVALID_INDEX;
Node* move_node = heap_.back();
heap_.pop_back();
if (index < heap_.size()) {
heap_[index] = move_node;
move_node->index_ = index;
if (move_node->prio_ < node->prio_) {
sift_up(index);
} else if (move_node->prio_ > node->prio_) {
sift_down(index);
}
}
}
private:
/** Repair the heap along an ascending path to the root. */
void sift_up(IndexType index)
{
Node* node = heap_[index];
PrioType prio = node->prio_;
while (index > 0) {
IndexType next_index = (index - 1) / 2;
Node* next_node = heap_[next_index];
if (next_node->prio_ <= prio) {
break;
}
heap_[index] = next_node;
next_node->index_ = index;
index = next_index;
}
node->index_ = index;
heap_[index] = node;
}
/** Repair the heap along a descending path. */
void sift_down(IndexType index)
{
Node* node = heap_[index];
PrioType prio = node->prio_;
IndexType num_elem = heap_.size();
while (index < num_elem / 2) {
IndexType next_index = 2 * index + 1;
Node* next_node = heap_[next_index];
if (next_index + 1 < num_elem) {
Node* tmp_node = heap_[next_index + 1];
if (tmp_node->prio_ <= next_node->prio_) {
++next_index;
next_node = tmp_node;
}
}
if (next_node->prio_ >= prio) {
break;
}
heap_[index] = next_node;
next_node->index_ = index;
index = next_index;
}
heap_[index] = node;
node->index_ = index;
}
/** Heap data structure. */
std::vector<Node*> heap_;
};
} // namespace mwmatching
#endif // MWMATCHING_PRIORITY_QUEUE_H_

View File

@ -13,7 +13,7 @@
#include <utility>
#include <vector>
#include "mwmatching.h"
#include "mwmatching.hpp"
namespace { // anonymous namespace

View File

@ -0,0 +1,403 @@
/*
* Unit tests for ConcatenableQueue data structure.
*
* Depends on the Boost.Test unit test framework.
* Tested with Boost v1.74, available from https://www.boost.org/
*/
#include <algorithm>
#include <memory>
#include <random>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#define BOOST_TEST_MODULE datastruct
#include <boost/test/unit_test.hpp>
#include "concatenable_queue.hpp"
BOOST_AUTO_TEST_SUITE(test_concatenable_queue)
BOOST_AUTO_TEST_CASE(test_single)
{
using Queue = mwmatching::ConcatenableQueue<int, std::string, std::string>;
Queue q("Q");
BOOST_TEST(q.name() == std::string("Q"));
Queue::Node n;
q.insert(&n, 4, "a");
BOOST_TEST(n.find() == std::string("Q"));
BOOST_TEST(n.prio() == 4);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == std::string("a"));
n.set_prio(8);
BOOST_TEST(n.prio() == 8);
BOOST_TEST(n.find() == std::string("Q"));
BOOST_TEST(q.min_prio() == 8);
BOOST_TEST(q.min_elem() == std::string("a"));
}
BOOST_AUTO_TEST_CASE(test_simple)
{
using Queue = mwmatching::ConcatenableQueue<int, std::string, char>;
Queue::Node n1, n2, n3, n4, n5;
Queue q1("A");
q1.insert(&n1, 5, 'a');
Queue q2("B");
q2.insert(&n2, 6, 'b');
Queue q3("C");
q3.insert(&n3, 7, 'c');
Queue q4("D");
q4.insert(&n4, 4, 'd');
Queue q5("E");
q5.insert(&n5, 3, 'e');
auto m345 = {&q3, &q4, &q5};
Queue q345("P");
q345.merge(m345.begin(), m345.end());
BOOST_TEST(n1.find() == std::string("A"));
BOOST_TEST(n2.find() == std::string("B"));
BOOST_TEST(n3.find() == std::string("P"));
BOOST_TEST(n4.find() == std::string("P"));
BOOST_TEST(n5.find() == std::string("P"));
BOOST_TEST(q345.min_prio() == 3);
BOOST_TEST(q345.min_elem() == 'e');
n5.set_prio(6);
BOOST_TEST(q345.min_prio() == 4);
BOOST_TEST(q345.min_elem() == 'd');
auto m12 = {&q1, &q2};
Queue q12("Q");
q12.merge(m12.begin(), m12.end());
BOOST_TEST(n1.find() == std::string("Q"));
BOOST_TEST(n2.find() == std::string("Q"));
BOOST_TEST(q12.min_prio() == 5);
BOOST_TEST(q12.min_elem() == 'a');
auto m12345 = {&q12, &q345};
Queue q12345("R");
q12345.merge(m12345.begin(), m12345.end());
BOOST_TEST(n1.find() == std::string("R"));
BOOST_TEST(n2.find() == std::string("R"));
BOOST_TEST(n3.find() == std::string("R"));
BOOST_TEST(n4.find() == std::string("R"));
BOOST_TEST(n5.find() == std::string("R"));
BOOST_TEST(q12345.min_prio() == 4);
BOOST_TEST(q12345.min_elem() == 'd');
n4.set_prio(8);
BOOST_TEST(q12345.min_prio() == 5);
BOOST_TEST(q12345.min_elem() == 'a');
n3.set_prio(2);
BOOST_TEST(q12345.min_prio() == 2);
BOOST_TEST(q12345.min_elem() == 'c');
q12345.split();
BOOST_TEST(n1.find() == std::string("Q"));
BOOST_TEST(n2.find() == std::string("Q"));
BOOST_TEST(n3.find() == std::string("P"));
BOOST_TEST(n4.find() == std::string("P"));
BOOST_TEST(n5.find() == std::string("P"));
BOOST_TEST(q12.min_prio() == 5);
BOOST_TEST(q12.min_elem() == 'a');
BOOST_TEST(q345.min_prio() == 2);
BOOST_TEST(q345.min_elem() == 'c');
q12.split();
BOOST_TEST(n1.find() == std::string("A"));
BOOST_TEST(n2.find() == std::string("B"));
q345.split();
BOOST_TEST(n3.find() == std::string("C"));
BOOST_TEST(n4.find() == std::string("D"));
BOOST_TEST(n5.find() == std::string("E"));
BOOST_TEST(q3.min_prio() == 2);
BOOST_TEST(q3.min_elem() == 'c');
}
BOOST_AUTO_TEST_CASE(test_medium)
{
using Queue = mwmatching::ConcatenableQueue<int, char, char>;
std::vector<char> queue_names(19);
for (int i = 0; i < 14; i++) {
queue_names[i] = 'A' + i;
}
queue_names[14] = 'P';
queue_names[15] = 'Q';
queue_names[16] = 'R';
queue_names[17] = 'S';
queue_names[18] = 'Z';
std::vector<Queue> queues(queue_names.begin(), queue_names.end());
Queue::Node nodes[14];
int prios[14] = {3, 8, 6, 2, 9, 4, 6, 8, 1, 5, 9, 4, 7, 8};
auto min_prio = [&prios](int begin, int end) -> int {
int p = begin;
int m = prios[p];
++p;
while (p != end) {
m = std::min(m, prios[p]);
++p;
}
return m;
};
for (int i = 0; i < 14; i++) {
BOOST_TEST(queues[i].name() == 'A' + i);
queues[i].insert(&nodes[i], prios[i], 'a' + i);
}
auto m14 = {&queues[0], &queues[1]};
queues[14].merge(m14.begin(), m14.end());
BOOST_TEST(queues[14].name() == 'P');
BOOST_TEST(queues[14].min_prio() == min_prio(0, 2));
auto m15 = {&queues[2], &queues[3], &queues[4]};
queues[15].merge(m15.begin(), m15.end());
BOOST_TEST(queues[15].name() == 'Q');
BOOST_TEST(queues[15].min_prio() == min_prio(2, 5));
auto m16 = {&queues[5], &queues[6], &queues[7], &queues[8]};
queues[16].merge(m16.begin(), m16.end());
BOOST_TEST(queues[16].name() == 'R');
BOOST_TEST(queues[16].min_prio() == min_prio(5, 9));
auto m17 = {&queues[9], &queues[10], &queues[11], &queues[12],
&queues[13]};
queues[17].merge(m17.begin(), m17.end());
BOOST_TEST(queues[17].name() == 'S');
BOOST_TEST(queues[17].min_prio() == min_prio(9, 14));
for (int i = 0; i < 2; i++) {
BOOST_TEST(nodes[i].find() == 'P');
}
for (int i = 2; i < 5; i++) {
BOOST_TEST(nodes[i].find() == 'Q');
}
for (int i = 5; i < 9; i++) {
BOOST_TEST(nodes[i].find() == 'R');
}
for (int i = 9; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'S');
}
auto m18 = {&queues[14], &queues[15], &queues[16], &queues[17]};
queues[18].merge(m18.begin(), m18.end());
BOOST_TEST(queues[18].name() == 'Z');
BOOST_TEST(queues[18].min_prio() == 1);
BOOST_TEST(queues[18].min_elem() == 'i');
for (int i = 0; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'Z');
}
prios[8] = 5;
nodes[8].set_prio(prios[8]);
BOOST_TEST(queues[18].min_prio() == 2);
BOOST_TEST(queues[18].min_elem() == 'd');
queues[18].split();
for (int i = 0; i < 2; i++) {
BOOST_TEST(nodes[i].find() == 'P');
}
for (int i = 2; i < 5; i++) {
BOOST_TEST(nodes[i].find() == 'Q');
}
for (int i = 5; i < 9; i++) {
BOOST_TEST(nodes[i].find() == 'R');
}
for (int i = 9; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'S');
}
BOOST_TEST(queues[14].min_prio() == min_prio(0, 2));
BOOST_TEST(queues[15].min_prio() == min_prio(2, 5));
BOOST_TEST(queues[16].min_prio() == min_prio(5, 9));
BOOST_TEST(queues[17].min_prio() == min_prio(9, 14));
for (int i = 14; i < 18; i++) {
queues[i].split();
}
for (int i = 0; i < 14; i++) {
BOOST_TEST(nodes[i].find() == 'A' + i);
BOOST_TEST(queues[i].min_prio() == prios[i]);
BOOST_TEST(queues[i].min_elem() == 'a' + i);
}
}
BOOST_AUTO_TEST_CASE(test_random)
{
using Queue = mwmatching::ConcatenableQueue<double, int, int>;
constexpr int NUM_NODES = 4000;
std::mt19937 rng(23456);
std::uniform_real_distribution<> prio_distribution;
std::uniform_int_distribution<> node_distribution(0, NUM_NODES - 1);
double prios[NUM_NODES];
Queue::Node nodes[NUM_NODES];
std::unordered_map<int, std::unique_ptr<Queue>> queues;
std::unordered_map<int, std::set<int>> queue_nodes;
std::unordered_map<int, std::set<int>> queue_subs;
std::set<int> live_queues;
std::set<int> live_merged_queues;
// Make trivial queues.
for (int i = 0; i < NUM_NODES; i++) {
int name = 10000 + i;
prios[i] = prio_distribution(rng);
queues[name] = std::unique_ptr<Queue>(new Queue(name));
queues[name]->insert(&nodes[i], prios[i], i);
queue_nodes[name].insert(i);
live_queues.insert(name);
}
// Run modifications.
for (int i = 0; i < 4000; i++) {
// Find top-level queue of few nodes.
for (int k = 0; k < 200; k++) {
int t = node_distribution(rng);
int name = nodes[t].find();
BOOST_TEST(queue_nodes[name].count(t) == 1);
}
// Change priority of a few nodes.
for (int k = 0; k < 10; k++) {
int t = node_distribution(rng);
int name = nodes[t].find();
BOOST_TEST(live_queues.count(name) == 1);
BOOST_TEST(queue_nodes[name].count(t) == 1);
BOOST_TEST(nodes[t].prio() == prios[t]);
double p = prio_distribution(rng);
prios[t] = p;
nodes[t].set_prio(p);
for (int tt : queue_nodes[name]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[name]->min_prio() == p);
BOOST_TEST(queues[name]->min_elem() == t);
}
if (live_queues.size() > 100) {
// Choose number of queues to merge between 2 and 100.
int k = std::uniform_int_distribution<>(2, 100)(rng);
k = std::uniform_int_distribution<>(2, k)(rng);
// Choose queues to merge.
std::vector<int> live_queue_vec(live_queues.begin(),
live_queues.end());
std::vector<int> sub_names;
std::vector<Queue*> sub_queues;
for (int ki = 0; ki < k; ki++) {
int t = std::uniform_int_distribution<>(
0, live_queue_vec.size() - 1)(rng);
int name = live_queue_vec[t];
sub_names.push_back(name);
sub_queues.push_back(queues[name].get());
live_queue_vec[t] = live_queue_vec.back();
live_queue_vec.pop_back();
live_queues.erase(name);
live_merged_queues.erase(name);
}
// Create new queue by merging selected queues.
int name = 20000 + i;
queues[name] = std::unique_ptr<Queue>(new Queue(name));
queues[name]->merge(sub_queues.begin(), sub_queues.end());
for (int nn : sub_names) {
queue_nodes[name].insert(queue_nodes[nn].begin(),
queue_nodes[nn].end());
}
queue_subs[name].insert(sub_names.begin(), sub_names.end());
live_queues.insert(name);
live_merged_queues.insert(name);
// Check new queue.
{
double p = 2;
int t = 0;
for (int tt : queue_nodes[name]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[name]->min_prio() == p);
BOOST_TEST(queues[name]->min_elem() == t);
}
}
if ((live_queues.size() <= 100)
|| (live_merged_queues.size() >= 100)) {
// Choose a random queue to split.
std::vector<int> live_queue_vec(live_merged_queues.begin(),
live_merged_queues.end());
int k = std::uniform_int_distribution<>(
0, live_queue_vec.size() - 1)(rng);
int name = live_queue_vec[k];
queues[name]->split();
for (int nn : queue_subs[name]) {
// Check reconstructed sub-queue.
double p = 2;
int t = 0;
for (int tt : queue_nodes[nn]) {
if (prios[tt] < p) {
t = tt;
p = prios[tt];
}
}
BOOST_TEST(queues[nn]->min_prio() == p);
BOOST_TEST(queues[nn]->min_elem() == t);
// Mark sub-queue as live.
live_queues.insert(nn);
if (queue_subs.count(nn) == 1) {
live_merged_queues.insert(nn);
}
}
live_merged_queues.erase(name);
live_queues.erase(name);
queues.erase(name);
queue_nodes.erase(name);
queue_subs.erase(name);
}
}
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -13,7 +13,7 @@
#define BOOST_TEST_MODULE mwmatching
#include <boost/test/unit_test.hpp>
#include "mwmatching.h"
#include "mwmatching.hpp"
using EdgeVectorLong = std::vector<mwmatching::Edge<long>>;
@ -327,19 +327,40 @@ BOOST_AUTO_TEST_CASE(test51_augment_blossom_nested)
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test61_unsigned)
BOOST_AUTO_TEST_CASE(test52_augment_blossom_nested2)
{
std::vector<mwmatching::Edge<unsigned int>> edges = {{1, 2, 5}, {2, 3, 11}, {3, 4, 5}};
Matching expect = {{2, 3}};
/*
*
* [4]--15 19--[2]
* | \ / |
* 16 [1] 21
* | / \ |
* [5]--17 19--[3]
* |
* 10
* |
* [6]
*/
EdgeVectorLong edges = {
{1, 2, 19}, {1, 3, 19}, {1, 4, 15}, {1, 5, 17}, {2, 3, 21}, {4, 5, 16}, {5, 6, 10}};
Matching expect = {{1, 4}, {2, 3}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test62_unsigned2)
BOOST_AUTO_TEST_CASE(test61_triangles_n9)
{
std::vector<mwmatching::Edge<unsigned int>> edges = {
{1, 2, 8}, {1, 3, 9}, {2, 3, 10}, {3, 4, 7}, {1, 6, 5}, {4, 5, 6}};
Matching expect = {{2, 3}, {1, 6}, {4, 5}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
/*
* t.f 9 nodes
*
* [1]------[4] [7]
* | \ | \ | \
* | [3] | [6] | [9]
* | / | / | /
* [2] [5]------[8]
*/
EdgeVectorLong edges = {
{1, 2, 1}, {1, 3, 1}, {2, 3, 1}, {4, 5, 1}, {4, 6, 1}, {5, 6, 1}, {7, 8, 1}, {7, 9, 1}, {8, 9, 1}, {1, 4, 1}, {5, 8, 1}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges).size() == 4);
}
BOOST_AUTO_TEST_CASE(test_fail_bad_input)
@ -749,3 +770,72 @@ BOOST_AUTO_TEST_CASE(test_blossom_not_full)
}
BOOST_AUTO_TEST_SUITE_END()
/* ********** Test graphs that force big values for dual / slack ********** */
BOOST_AUTO_TEST_SUITE(test_value_range)
BOOST_AUTO_TEST_CASE(test_big_blossom_dual)
{
/*
* Force modified blossom dual close to 2*maxweight.
*
* [3]
* / \
* W-4/ \W
* 7 / \
* [1]-----[2]-----[4]
* | W-4
* 5|
* | 1
* [5]-----[6]
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 7}, {2, 3, w - 4}, {2, 4, w - 4}, {2, 5, 5}, {3, 4, w}, {5, 6, 1}};
Matching expect = {{1, 2}, {3, 4}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test_negative_blossom_dual)
{
/*
* Force modified blossom dual close to -maxweight.
*
* [3]
* / \
* 5/ \7
* 1 / \
* [1]-----[2]-----[4]
* | 5
* 1|
* | W
* [5]-----[6]
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 1}, {2, 3, 5}, {2, 4, 5}, {2, 5, 1}, {3, 4, 7}, {5, 6, w}};
Matching expect = {{1, 2}, {3, 4}, {5, 6}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_CASE(test_big_edge_slack)
{
/*
* Force modified edge slack close to 3*maxweight.
*
* 6 W W-2 5
* [1]-----[2]-----[3]-----[4]-----[5]
* | |
* |1 |1
* | |
* [6]-----[7]-----[8]-----[9]-----[10]
* 6 W W-2 5
*/
long w = std::numeric_limits<long>::max() / 6;
EdgeVectorLong edges = {{1, 2, 6}, {1, 6, 1}, {2, 3, w}, {3, 4, w - 2}, {3, 8, 1}, {4, 5, 5},
{6, 7, 6}, {7, 8, w}, {8, 9, w - 2}, {9, 10, 5}};
Matching expect = {{1, 6}, {2, 3}, {4, 5}, {7, 8}, {9, 10}};
BOOST_TEST(mwmatching::maximum_weight_matching(edges) == expect);
}
BOOST_AUTO_TEST_SUITE_END()

252
cpp/test_priority_queue.cpp Normal file
View File

@ -0,0 +1,252 @@
/*
* Unit tests for PriorityQueue data structure.
*
* Depends on the Boost.Test unit test framework.
* Tested with Boost v1.74, available from https://www.boost.org/
*/
#include <algorithm>
#include <climits>
#include <memory>
#include <random>
#include <string>
#include <tuple>
#include <vector>
#define BOOST_TEST_MODULE datastruct
#include <boost/test/unit_test.hpp>
#include "priority_queue.hpp"
BOOST_AUTO_TEST_SUITE(test_priority_queue)
BOOST_AUTO_TEST_CASE(test_empty)
{
using Queue = mwmatching::PriorityQueue<int, std::string>;
Queue q;
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_single)
{
using Queue = mwmatching::PriorityQueue<int, std::string>;
Queue q;
Queue::Node n1;
BOOST_TEST(n1.valid() == false);
q.insert(&n1, 5, "a");
BOOST_TEST(n1.valid() == true);
BOOST_TEST(n1.prio() == 5);
BOOST_TEST(q.empty() == false);
BOOST_TEST(q.min_prio() == 5);
BOOST_TEST(q.min_elem() == std::string("a"));
q.set_prio(&n1, 3);
BOOST_TEST(n1.prio() == 3);
BOOST_TEST(q.min_prio() == 3);
BOOST_TEST(q.min_elem() == std::string("a"));
q.remove(&n1);
BOOST_TEST(n1.valid() == false);
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_simple)
{
using Queue = mwmatching::PriorityQueue<int, char>;
Queue q;
Queue::Node nodes[10];
q.insert(&nodes[0], 9, 'a');
BOOST_TEST(q.min_prio() == 9);
BOOST_TEST(q.min_elem() == 'a');
q.insert(&nodes[1], 4, 'b');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[2], 7, 'c');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[3], 5, 'd');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[4], 8, 'e');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[5], 6, 'f');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.insert(&nodes[6], 4, 'g');
q.insert(&nodes[7], 5, 'h');
q.insert(&nodes[8], 2, 'i');
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.insert(&nodes[9], 6, 'j');
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.set_prio(&nodes[2], 1);
BOOST_TEST(q.min_prio() == 1);
BOOST_TEST(q.min_elem() == 'c');
q.set_prio(&nodes[4], 3);
BOOST_TEST(q.min_prio() == 1);
BOOST_TEST(q.min_elem() == 'c');
q.remove(&nodes[2]);
BOOST_TEST(q.min_prio() == 2);
BOOST_TEST(q.min_elem() == 'i');
q.remove(&nodes[8]);
BOOST_TEST(q.min_prio() == 3);
BOOST_TEST(q.min_elem() == 'e');
q.remove(&nodes[4]);
q.remove(&nodes[1]);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'g');
q.remove(&nodes[3]);
q.remove(&nodes[9]);
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'g');
q.remove(&nodes[6]);
BOOST_TEST(q.min_prio() == 5);
BOOST_TEST(q.min_elem() == 'h');
BOOST_TEST(q.empty() == false);
q.clear();
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_increase_prio)
{
using Queue = mwmatching::PriorityQueue<int, char>;
Queue q;
Queue::Node n1;
q.insert(&n1, 5, 'a');
q.set_prio(&n1, 8);
BOOST_TEST(n1.prio() == 8);
BOOST_TEST(q.min_prio() == 8);
q.clear();
Queue::Node n2, n3, n4;
q.insert(&n1, 9, 'A');
q.insert(&n2, 4, 'b');
q.insert(&n3, 7, 'c');
q.insert(&n4, 5, 'd');
BOOST_TEST(q.min_prio() == 4);
BOOST_TEST(q.min_elem() == 'b');
q.set_prio(&n2, 8);
BOOST_TEST(n2.prio() == 8);
BOOST_TEST(q.min_elem() == 'd');
BOOST_TEST(q.min_prio() == 5);
q.set_prio(&n3, 10);
BOOST_TEST(n3.prio() == 10);
BOOST_TEST(q.min_elem() == 'd');
q.remove(&n4);
BOOST_TEST(q.min_elem() == 'b');
q.remove(&n2);
BOOST_TEST(q.min_prio() == 9);
BOOST_TEST(q.min_elem() == 'A');
q.remove(&n1);
BOOST_TEST(q.min_elem() == 'c');
BOOST_TEST(q.min_prio() == 10);
q.remove(&n3);
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_CASE(test_random)
{
using Queue = mwmatching::PriorityQueue<int, int>;
Queue q;
const int num_elem = 1000;
std::vector<std::tuple<std::unique_ptr<Queue::Node>, int, int>> elems;
int next_data = 0;
std::mt19937 rng(34567);
auto check = [&q,&elems]() {
int min_prio = q.min_prio();
int min_data = q.min_elem();
int best_prio = INT_MAX;
bool found = false;
for (const auto& v : elems) {
int this_prio = std::get<1>(v);
int this_data = std::get<2>(v);
best_prio = std::min(best_prio, this_prio);
if ((this_prio == min_prio) && (this_data == min_data)) {
found = true;
}
}
BOOST_TEST(found == true);
BOOST_TEST(min_prio == best_prio);
};
for (int i = 0; i < num_elem; ++i) {
++next_data;
int prio = std::uniform_int_distribution<>(0, 1000000)(rng);
std::unique_ptr<Queue::Node> nptr(new Queue::Node);
q.insert(nptr.get(), prio, next_data);
elems.push_back(std::make_tuple(std::move(nptr), prio, next_data));
check();
}
for (int i = 0; i < 10000; ++i) {
int p = std::uniform_int_distribution<>(0, num_elem - 1)(rng);
Queue::Node* node = std::get<0>(elems[p]).get();
int prio = std::get<1>(elems[p]);
prio = std::uniform_int_distribution<>(0, 1000000)(rng);
q.set_prio(node, prio);
std::get<1>(elems[p]) = prio;
check();
p = std::uniform_int_distribution<>(0, num_elem - 1)(rng);
node = std::get<0>(elems[p]).get();
q.remove(node);
elems.erase(elems.begin() + p);
check();
++next_data;
prio = std::uniform_int_distribution<>(0, 1000000)(rng);
std::unique_ptr<Queue::Node> nptr(new Queue::Node);
q.insert(nptr.get(), prio, next_data);
elems.push_back(std::make_tuple(std::move(nptr), prio, next_data));
check();
}
for (int i = 0; i < num_elem; ++i) {
int p = std::uniform_int_distribution<>(0, num_elem - 1 - i)(rng);
Queue::Node* node = std::get<0>(elems[p]).get();
q.remove(node);
elems.erase(elems.begin() + p);
if (! elems.empty()) {
check();
}
}
BOOST_TEST(q.empty() == true);
}
BOOST_AUTO_TEST_SUITE_END()

View File

@ -4,19 +4,20 @@
## Introduction
This document describes the implementation of an algorithm that computes a maximum weight matching
in a general graph in time _O(n<sup>3</sup>)_, where _n_ is the number of vertices in the graph.
in a general graph in time _O(n (n + m) log n)_, where _n_ is the number of vertices in
the graph and _m_ is the number of edges.
In graph theory, a _matching_ is a subset of edges such that none of them share a common vertex.
A _maximum cardinality matching_ is a matching that contains the largest possible number of edges
(or equivalently, the largest possible number of vertices).
For a graph that has weights attached to its edges, a _maximum weight matching_
If a graph has weights assigned to its edges, a _maximum weight matching_
is a matching that achieves the largest possible sum of weights of matched edges.
An algorithm for maximum weight matching can obviously also be used to calculate a maximum
cardinality matching by simply assigning weight 1 to all edges.
Certain computer science problems can be understood as _restrictions_ of maximum weighted matching
Certain related problems can be understood as _restrictions_ of maximum weighted matching
in general graphs.
Examples are: maximum matching in bipartite graphs, maximum cardinality matching in general graphs,
and maximum weighted matching in general graphs with edge weights limited to integers
@ -48,7 +49,7 @@ It is based on the ideas of Edmonds, but uses different data structures to reduc
of work.
In 1983, Galil, Micali and Gabow published a maximum weighted matching algorithm that runs in
time _O(n\*m\*log(n))_ [[4]](#galil_micali_gabow1986) .
time _O(n m log n)_ [[4]](#galil_micali_gabow1986) .
It is an implementation of Edmonds' blossom algorithm that uses advanced data structures
to speed up critical parts of the algorithm.
This algorithm is asymptotically faster than _O(n<sup>3</sup>)_ for sparse graphs,
@ -63,45 +64,32 @@ of the literature.
The paper describes a maximum weighted matching algorithm that is similar to Edmonds'
blossom algorithm, but carefully implemented to run in time _O(n<sup>3</sup>)_.
It then sketches how advanced data structures can be added to arrive at the Galil-Micali-Gabow
algorithm that runs in time _O(n\*m\*log(n))_.
algorithm that runs in time _O(n m log n)_.
In 1990, Gabow published a maximum weighted matching algorithm that runs in time
_O(n\*m + n<sup>2</sup>\*log(n))_ [[6]](#gabow1990) .
_O(n m + n<sup>2</sup> log n)_ [[6]](#gabow1990) .
It uses several advanced data structures, including Fibonacci heaps.
Unfortunately I don't understand this algorithm at all.
## Choosing an algorithm
I selected the _O(n<sup>3</sup>)_ variant of Edmonds' blossom algorithm as described by
Galil [[5]](#galil1986) .
This algorithm is usually credited to Gabow [[3]](#gabow1974), but I find the description
in [[5]](#galil1986) easier to understand.
I selected the _O(n m log n)_ algorithm by Galil, Micali and Gabow
[[4]](#galil_micali_gabow1986).
This is generally a fine algorithm.
One of its strengths is that it is relatively easy to understand, especially compared
to the more recent algorithms.
Its run time is asymptotically optimal for complete graphs (graphs that have an edge
between every pair of vertices).
On the other hand, the algorithm is suboptimal for sparse graphs.
It is possible to construct highly sparse graphs, having _m = O(n)_,
that cause this algorithm to perform _&Theta;(n<sup>3</sup>)_ steps.
In such cases the Galil-Micali-Gabow algorithm would be significantly faster.
Then again, there is a question of how important the worst case is for practical applications.
I suspect that the simple algorithm typically needs only about _O(n\*m)_ steps when running
on random sparse graphs with random weights, i.e. much faster than its worst case bound.
After trading off these properties, I decided that I prefer an algorithm that is understandable
and has decent performance, over an algorithm that is faster in specific cases but also
significantly more complicated.
This algorithm is asymptotically optimal for sparse graphs.
It has also been shown to be quite fast in practice on several types of graphs
including random graphs [[7]](#mehlhorn_schafer2002).
This algorithm is more difficult to implement than the older _O(n<sup>3</sup>)_ algorithm.
In particular, it requires a specialized data structure to implement concatenable priority queues.
This increases the size and complexity of the code quite a bit.
However, in my opinion the performance improvement is worth the extra effort.
## Description of the algorithm
My implementation closely follows the description by Zvi Galil in [[5]](#galil1986) .
I recommend to read that paper before diving into my description below.
My implementation roughly follows the description by Zvi Galil in [[5]](#galil1986) .
I recommend reading that paper before diving into my description below.
The paper explains the algorithm in depth and shows how it relates to matching
in bipartite graphs and non-weighted graphs.
@ -253,14 +241,14 @@ have _slack_.
An augmenting path that consists only of tight edges is _guaranteed_ to increase the weight
of the matching as much as possible.
While searching for an augmenting path, we simply restrict the search to tight edges,
While searching for an augmenting path, we restrict the search to tight edges,
ignoring all edges that have slack.
Certain explicit actions of the algorithm cause edges to become tight or slack.
How this works will be explained later.
To find an augmenting path, the algorithm searches for alternating paths that start
in an unmatched vertex.
The collection of alternating paths forms a forest of trees.
The collection of such alternating paths forms a forest of trees.
Each tree is rooted in an unmatched vertex, and all paths from the root to the leaves of a tree
are alternating paths.
The nodes in these trees are top-level blossoms.
@ -289,8 +277,8 @@ an odd-length alternating cycle.
The lowest common ancestor node in the alternating tree forms the beginning and end
of the alternating cycle.
In this case a new blossom must be created by shrinking the cycle.
If the two S-blossoms are in different alternating trees, the edge that links the blossoms
is part of an augmenting path between the roots of the two trees.
On the other hand, if the two S-blossoms are in different alternating trees,
the edge that links the blossoms is part of an augmenting path between the roots of the two trees.
![Figure 3](figures/graph3.png) <br>
*Figure 3: Growing alternating trees*
@ -314,7 +302,7 @@ The search procedure considers these vertices one-by-one and tries to use them t
either grow the alternating tree (thus adding new vertices to the queue),
or discover an augmenting path or a new blossom.
In detail, the search for an augmenting path proceeds as follows:
The search for an augmenting path proceeds as follows:
- Mark all top-level blossoms as _unlabeled_.
- Initialize an empty queue _Q_.
@ -469,9 +457,9 @@ $$ \pi_{x,y} = u_x + u_y + \sum_{(x,y) \in B} z_B - w_{x,y} $$
An edge is _tight_ if and only if its slack is zero.
Given the values of the dual variables, it is very easy to calculate the slack of an edge
which is not contained in any blossom: simply add the duals of its incident vertices and
which is not contained in any blossom: add the duals of its incident vertices and
subtract the weight.
To check whether an edge is tight, simply compute its slack and check whether it is zero.
To check whether an edge is tight, simply compute its slack and compare it to zero.
Calculating the slack of an edge that is contained in one or more blossoms is a little tricky,
but fortunately we don't need such calculations.
@ -504,7 +492,7 @@ At that point the maximum weight matching has been found.
When the matching algorithm is finished, the constraints can be checked to verify
that the matching is optimal.
This check is simpler and faster than the matching algorithm itself.
It can therefore be a useful way to guard against bugs in the matching algorithm.
It can therefore be a useful way to guard against bugs in the algorithm.
### Rules for updating dual variables
@ -534,11 +522,12 @@ It then changes dual variables as follows:
- _z<sub>B</sub> &larr; z<sub>B</sub> &#x2212; 2 * &delta;_ for every non-trivial T-blossom _B_
Dual variables of unlabeled blossoms and their vertices remain unchanged.
Dual variables _z<sub>B</sub>_ of non-trivial sub-blossoms also remain changed;
Dual variables _z<sub>B</sub>_ of non-trivial sub-blossoms also remain unchanged;
only top-level blossoms have their _z<sub>B</sub>_ updated.
Note that this update does not change the slack of edges that are either matched,
or linked in the alternating tree, or contained in a blossom.
Note that these rules ensure that no change occurs to the slack of any edge which is matched,
or part of an alternating tree, or contained in a blossom.
Such edges are tight and remain tight through the update.
However, the update reduces the slack of edges between S blossoms and edges between S-blossoms
and unlabeled blossoms.
It may cause some of these edges to become tight, allowing them to be used
@ -569,25 +558,62 @@ If the dual update is limited by _&delta;<sub>4</sub>_, it causes the dual varia
a T-blossom to become zero.
The next step is to expand that blossom.
A dual update may find that _&delta; = 0_, implying that the dual variables don't change.
### Discovering tight edges through delta steps
A delta step may find that _&delta; = 0_, implying that the dual variables don't change.
This can still be useful since all types of updates have side effects (adding an edge
to an alternating tree, or expanding a blossom) that allow the algorithm to make progress.
In fact, it is convenient to let the dual update mechanism drive the entire process of discovering
tight edges and growing alternating trees.
During a single _stage_, the algorithm may iterate several times between scanning tight edges and
updating dual variables.
These iterations are called _substages_.
To clarify: A stage is the process of growing alternating trees until an augmenting path is found.
In my description of the search algorithm above, I stated that upon discovery of a tight edge
between a newly labeled S-vertex and an unlabeled vertex or a different S-blossom, the edge should
be used to grow the alternating tree or to create a new blossom or to form an augmenting path.
However, it turns out to be easier to postpone the use of such edges until the next delta step.
While scanning newly labeled S-vertices, edges to unlabeled vertices or different S-blossoms
are discovered but not yet used.
Such edges are merely registered in a suitable data structure.
Even if the edge is tight, it is registered rather than used right away.
Once the scan completes, a delta step will be done.
If any tight edges were discovered during the scan, the delta step will find that either
_&delta;<sub>2</sub> = 0_ or _&delta;<sub>3</sub> = 0_.
The corresponding step (growing the alternating tree, creating a blossom or augmenting
the matching) will occur at that point.
If no suitable tight edges exist, a real (non-zero) change of dual variables will occur.
The search for an augmenting path becomes as follows:
- Mark all top-level blossoms as _unlabeled_.
- Initialize an empty queue _Q_.
- Assign label S to all top-level blossoms that contain an unmatched vertex.
Add all vertices inside such blossoms to _Q_.
- Repeat until either an augmenting path is found or _&delta;<sub>1</sub> = 0_:
- Scan all vertices in Q as described earlier.
Register edges to unlabeled vertices or other S-blossoms.
Do not yet use such edges to change the alternating tree, even if the edge is tight.
- Calculate _&delta;_ and update dual variables as described above.
- If _&delta; = &delta;<sub>1</sub>_, end the search.
The maximum weight matching has been found.
- If _&delta; = &delta;<sub>2</sub>_, use the corresponding edge to grow the alternating tree.
Assign label T to the unlabeled blossom.
Then assign label S to its mate and add the new S-vertices to _Q_.
- If _&delta; = &delta;<sub>3</sub>_ and the corresponding edge connects two S-blossoms
in the same alternating tree, use the edge to create a new blossom.
Add the new S-vertices to _Q_.
- If _&delta; = &delta;<sub>3</sub>_ and the corresponding edge connects two S-blossoms
in different alternating trees, use the edge to construct an augmenting path.
End the search and return the augmenting path.
- If _&delta; = &delta;<sub>4</sub>_, expand the corresponding T-blossom.
It may seem complicated, but this is actually easier.
The code that scans newly labeled S-vertices, no longer needs special treatment of tight edges.
In general, multiple updates of the dual variables are necessary during a single _stage_ of
the algorithm.
Remember that a stage is the process of growing alternating trees until an augmenting path is found.
A stage ends either by augmenting the matching, or by concluding that no further improvement
is possible.
Each stage consists of one or more substages.
A substage scans tight edges to grow the alternating trees.
When a substage runs out of tight edges, it ends by performing a dual variable update.
A substage also ends immediately when it finds an augmenting path.
At the end of each stage, labels and alternating trees are removed.
The matching algorithm ends when a substage ends in a dual variable update limited
by _&delta;<sub>1</sub>_.
At that point the matching has maximum weight.
### Expanding a blossom
@ -635,161 +661,322 @@ All vertices of sub-blossoms that got label S are inserted into _Q_.
![Figure 5](figures/graph5.png) <br>
*Figure 5: Expanding a T-blossom*
### Keeping track of least-slack edges
### Keeping track of the top-level blossom of each vertex
To perform a dual variable update, the algorithm needs to compute the values
The algorithm often needs to find the top-level blossom _B(x)_ that contains a given vertex _x_.
A naive implementation may keep this information in an array where the element with
index _x_ holds a pointer to blossom _B(x)_.
Lookup in this array would be fast, but keeping the array up-to-date takes too much time.
There can be _O(n)_ stages, and _O(n)_ blossoms can be created or expanded during a stage,
and a blossom can contain _O(n)_ vertices,
therefore the total number of updates to the array could add up to _O(n<sup>3</sup>)_.
To solve this, we use a special data structure: a _concatenable priority queue_.
Each top-level blossom maintains an instance of this type of queue, containing its vertices.
Each vertex is a member in precisely one such queue.
To find the top-level blossom _B(x)_ that contains a given vertex _x_, we determine
the queue instance in which the vertex is a member.
This takes time _O(log n)_.
The queue instance corresponds directly to a specific blossom, which we can find
for example by storing a pointer to the blossom inside the queue instance.
When a new blossom is created, the concatenable queues of its sub-blossoms are merged
to form one concatenable queue for the new blossom.
The merged queue contains all vertices of the original queues.
Merging a pair of queues takes time _O(log n)_.
To merge the queues of _k_ sub-blossoms, the concatenation step is repeated _k-1_ times,
taking total time _O(k log n)_.
When a blossom is expanded, its concatenable queue is un-concatenated to recover separate queues
for the sub-blossoms.
This also takes time _O(log n)_ for each sub-blossom.
Implementation details of concatenable queues are discussed later in this document.
### Lazy updating of dual variables
During a delta step, the dual variables of labeled vertices and blossoms change as described above.
Updating these variables directly would take time _O(n)_ per delta step.
The total number of delta steps during a matching may be _&Theta;(n<sup>2</sup>)_,
pushing the total time to update dual variables to _O(n<sup>3</sup>)_ which is too slow.
To solve this, [[4]](#galil_micali_gabow1986) describes a technique that stores dual values
in a _modified_ form which is invariant under delta steps.
The modified values can be converted back to the true dual values when necessary.
[[7]](#mehlhorn_schafer2002) describes a slightly different technique which I find easier
to understand.
My implementation is very similar to theirs.
The first trick is to keep track of the running sum of _&delta;_ values since the beginning of the algorithm.
Let's call that number _&Delta;_.
At the start of the algorithm _&Delta; = 0_, but the value increases as the algorithm goes through delta steps.
For each non-trivial blossom, rather than storing its true dual value, we store a _modified_ dual value:
- For an S-blossom, the modified dual value is _z'<sub>B</sub> = z<sub>B</sub> - 2 &Delta;_
- For a T-blossom, the modified dual value is _z'<sub>B</sub> = z<sub>B</sub> + 2 &Delta;_
- For an unlabeled blossom or non-top-level blossom, the modified dual value is equal
to the true dual value.
These modified values are invariant under delta steps.
Thus, there is no need to update the stored values during a delta step.
Since the modified blossom dual value depends on the label (S or T) of the blossom,
the modified value must be updated whenever the label of the blossom changes.
This update can be done in constant time, and changing the label of a blossom is
in any case an explicit step, so this won't increase the asymptotic run time.
For each vertex, rather than storing its true dual value, we store a _modified_ dual value:
- For an S-vertex, the modified dual value is _u'<sub>x</sub> = u<sub>x</sub> + &Delta;_
- For a T-vertex, the modified dual value is _u'<sub>x</sub> = u<sub>x</sub> - offset<sub>B(x)</sub> - &Delta;_
- For an unlabeled vertex, the modified dual value is _u'<sub>x</sub> = u<sub>x</sub> - offset<sub>B(x)</sub>_
where _offset<sub>B</sub>_ is an extra variable which is maintained for each top-level blossom.
Again, the modified values are invariant under delta steps, which implies that no update
to the stored values is necessary during a delta step.
Since the modified vertex dual value depends on the label (S or T) of its top-level blossom,
an update is necessary when that label changes.
For S-vertices, we can afford to apply that update directly to the vertices involved.
This is possible since a vertex becomes an S-vertex at most once per stage.
The situation is more complicated for T-vertices.
During a stage, a T-vertex can become unlabeled if it is part of a T-blossom that gets expanded.
The same vertex can again become a T-vertex, then again become unlabeled during a subsequent
blossom expansion.
In this way, a vertex can transition between T-vertex and unlabeled vertex up to _O(n)_ times
within a stage.
We can not afford to update the stored modified vertex dual so many times.
This is where the _offset_ variables come in.
If a blossom becomes a T-blossom, rather than updating the modified duals of all vertices,
we update only the _offset_ variable of the blossom such that the modified vertex duals
remain unchanged.
If a blossom is expanded, we push the _offset_ values down to its sub-blossoms.
### Efficiently computing _&delta;_
To perform a delta step, the algorithm computes the values
of _&delta;<sub>1</sub>_, _&delta;<sub>2</sub>_, _&delta;<sub>3</sub>_ and _&delta;<sub>4</sub>_
and determine which edge (_&delta;<sub>2</sub>_, _&delta;<sub>3</sub>_) or
and determines which edge (_&delta;<sub>2</sub>_, _&delta;<sub>3</sub>_) or
blossom (_&delta;<sub>4</sub>_) achieves the minimum value.
The total number of dual updates during a matching may be _&Theta;(n<sup>2</sup>)_.
Since we want to limit the total number of steps of the matching algorithm to _O(n<sup>3</sup>)_,
each dual update may use at most _O(n)_ steps.
A naive implementation might compute _&delta;_ by looping over the vertices, blossoms and edges
in the graph.
The total number of delta steps during a matching may be _&Theta;(n<sup>2</sup>)_,
pushing the total time for _&delta;_ calculations to _O(n<sup>2</sup> m)_ which is much too slow.
[[4]](#galil_micali_gabow1986) introduces a combination of data structures from which
the value of _&delta;_ can be computed efficiently.
We can find _&delta;<sub>1</sub>_ in _O(n)_ steps by simply looping over all vertices
and checking their dual variables.
We can find _&delta;<sub>4</sub>_ in _O(n)_ steps by simply looping over all non-trivial blossoms
(since there are fewer than _n_ non-trivial blossoms).
We could find _&delta;<sub>2</sub>_ and _&delta;<sub>3</sub>_ by simply looping over
all edges of the graph in _O(m)_ steps, but that exceeds our budget of _O(n)_ steps.
So we need better techniques.
_&delta;<sub>1</sub>_ is the minimum dual value of any S-vertex.
This value can be computed in constant time.
The dual value of an unmatched vertex is reduced by _&delta;_ during every delta step.
Since all vertex duals start with the same dual value _u<sub>start</sub>_,
all unmatched vertices have dual value _&delta;<sub>1</sub> = u<sub>start</sub> - &Delta;_.
_&delta;<sub>3</sub>_ is half of the minimum slack of any edge between two different S-blossoms.
To compute this efficiently, we keep edges between S-blossoms in a priority queue.
The edges are inserted into the queue during scanning of newly labeled S-vertices.
To compute _&delta;<sub>3</sub>_, we simply find the minimum-priority element of the queue.
For _&delta;<sub>2</sub>_, we determine the least-slack edge between an S-blossom and unlabeled
blossom as follows.
For every vertex _y_ in any unlabeled blossom, keep track of _e<sub>y</sub>_:
the least-slack edge that connects _y_ to any S-vertex.
The thing to keep track of is the identity of the edge, not the slack value.
This information is kept up-to-date as part of the procedure that considers S-vertices.
The scanning procedure eventually considers all edges _(x, y, w)_ where _x_ is an S-vertex.
At that moment _e<sub>y</sub>_ is updated if the new edge has lower slack.
A complication may occur when a new blossom is created.
Edges that connect different top-level S-blossoms before creation of the new blossom,
may end up as internal edges inside the newly created blossom.
This implies that such edges would have to be removed from the _&delta;<sub>3</sub>_ priority queue,
but that would be quite difficult.
Instead, we just let those edges stay in the queue.
When computing the value of _&delta;<sub>3</sub>_, we thus have to check whether the minimum
element represents an edge between different top-level blossoms.
If not, we discard such stale elements until we find an edge that does.
Calculating _&delta;<sub>2</sub>_ then becomes a matter of looping over all vertices _x_,
checking whether _B(x)_ is unlabeled and calculating the slack of _e<sub>x</sub>_.
A complication occurs when dual variables are updated.
At that point, the slack of any edge between different S-blossoms decreases by _2\*&delta;_.
But we can not afford to update the priorities of all elements in the queue.
To solve this, we set the priority of each edge to its _modified slack_.
One subtle aspect of this technique is that a T-vertex can loose its label when
the containing T-blossom gets expanded.
At that point, we suddenly need to have kept track of its least-slack edge to any S-vertex.
It is therefore necessary to do the same tracking also for T-vertices.
So the technique is: For any vertex that is not an S-vertex, track its least-slack edge
to any S-vertex.
The _modified slack_ of an edge is defined as follows:
Another subtle aspect is that a T-vertex may have a zero-slack edge to an S-vertex.
Even though these edges are already tight, they must still be tracked.
If the T-vertex loses its label, this edge needs to be reconsidered by the scanning procedure.
By including these edges in least-slack edge tracking, they will be rediscovered
through a _&delta;<sub>2</sub>=0_ update after the vertex becomes unlabeled.
$$ \pi'_{x,y} = u'_x + u'_y - w_{x,y} $$
For _&delta;<sub>3</sub>_, we determine the least-slack edge between any pair of S-blossoms
as follows.
For every S-blossom _B_, keep track of _e<sub>B</sub>_:
the least-slack edge between _B_ and any other S-blossom.
Note that this is done per S-blossoms, not per S-vertex.
This information is kept up-to-date as part of the procedure that considers S-vertices.
Calculating _&delta;<sub>3</sub>_ then becomes a matter of looping over all S-blossoms _B_
and calculating the slack of _e<sub>B</sub>_.
The modified slack is computed in the same way as true slack, except it uses
the modified vertex duals instead of true vertex duals.
Blossom duals are ignored since we will never compute the modified slack of an edge that
is contained inside a blossom.
Because modified vertex duals are invariant under delta steps, so is the modified edge slack.
As a result, the priorities of edges in the priority queue remain unchanged during a delta step.
A complication occurs when S-blossoms are merged.
Some of the least-slack edges of the sub-blossoms may be internal edges in the merged blossom,
and therefore irrelevant for _&delta;<sub>3</sub>_.
As a result, the proper _e<sub>B</sub>_ of the merged blossom may be different from all
least-slack edges of its sub-blossoms.
An additional data structure is needed to find _e<sub>B</sub>_ of the merged blossom.
_&delta;<sub>4</sub>_ is half of the minimum dual variable of any T-blossom.
To compute this efficiently, we keep non-trivial T-blossoms in a priority queue.
The blossoms are inserted into the queue when they become a T-blossom and removed from
the queue when they stop being a T-blossom.
For every S-blossom _B_, maintain a list _L<sub>B</sub>_ of edges between _B_ and
other S-blossoms.
The purpose of _L<sub>B</sub>_ is to contain, for every other S-blossom, the least-slack edge
between _B_ and that blossom.
These lists are kept up-to-date as part of the procedure that considers S-vertices.
While considering vertex _x_, if edge _(x, y, w)_ has positive slack,
and _B(y)_ is an S-blossom, the edge is inserted in _L<sub>B(x)</sub>_.
This may cause _L<sub>B(x)</sub>_ to contain multiple edges to _B(y)_.
That's okay as long as it definitely contains the least-slack edge to _B(y)_.
A complication occurs when dual variables are updated.
At that point, the dual variable of any T-blossom decreases by _2\*&delta;_.
But we can not afford to update the priorities of all elements in the queue.
To solve this, we set the priority of each blossom to its _modified_ dual value
_z'<sub>B</sub> = z<sub>B</sub> + 2\*&Delta;_.
These values are invariant under delta steps.
When a new S-blossom is created, form its list _L<sub>B</sub>_ by merging the lists
of its sub-blossoms.
Ignore edges that are internal to the merged blossom.
If there are multiple edges to the same target blossom, keep only the least-slack of these edges.
Then find _e<sub>B</sub>_ of the merged blossom by simply taking the least-slack edge
out of _L<sub>B</sub>_.
_&delta;<sub>2</sub>_ is the minimum slack of any edge between an S-vertex and unlabeled vertex.
To compute this efficiently, we use a fairly complicated strategy that involves
three levels of priority queues.
At the lowest level, every T-vertex or unlabeled vertex maintains a separate priority queue
of edges between itself and any S-vertex.
Edges are inserted into this queue during scanning of newly labeled S-vertices.
Note that S-vertices do not maintain this type of queue.
The priorities of edges in these queues are set to their _modified slack_.
This ensures that the priorities remain unchanged during delta steps.
The priorities also remain unchanged when the T-vertex becomes unlabeled or the unlabeled
vertex becomes a T-vertex.
At the middle level, every T-blossom or unlabeled top-level blossom maintains a priority queue
containing its vertices.
This is in fact the _concatenable priority queue_ that is maintained by every top-level blossom
as was described earlier in this document.
The priority of each vertex in the mid-level queue is set to the minimum priority of any edge
in the low-level queue of that vertex.
If edges are added to (or removed from) the low-level queue, the priority of the corresponding
vertex in the mid-level queue may change.
If the low-level queue of a vertex is empty, that vertex has priority _Infinity_
in the mid-level queue.
At the highest level, unlabeled top-level blossoms are tracked in one global priority queue.
The priority of each blossom in this queue is set to the minimum slack of any edge
from that blossom to an S-vertex plus _&Delta;_.
These priorities are invariant under delta steps.
To compute _&delta;<sub>2</sub>_, we find the minimum priority in the high-level queue
and adjust it by _&Delta;_.
To find the edge associated with _&delta;<sub>2</sub>_,
we use the high-level queue to find the unlabeled blossom with minimum priority,
then use that blossom's mid-level queue to find the vertex with minimum priority,
then use that vertex's low-level queue to find the edge with minimum priority.
The whole thing is a bit tricky, but it works.
### Re-using alternating trees
According to [[5]](#galil1986), labels and alternating trees should be erased at the end of each stage.
However, the algorithm can be optimized by keeping some of the labels and re-using them
in the next stage.
The optimized algorithm erases _only_ the two alternating trees that are part of
the augmenting path.
All blossoms in those two trees lose their labels and become free blossoms again.
Other alternating trees, which are not involved in the augmenting path, are preserved
into the next stage, and so are the labels on the blossoms in those trees.
This optimization is well known and is described for example in [[7]](#mehlhorn_schafer2002).
It does not affect the worst-case asymptotic run time of the algorithm,
but it provides a significant practical speed up for many types of graphs.
Erasing alternating trees is easy enough, but selectively stripping labels off blossoms
has a few implications.
The blossoms that lose their labels need to have their modified dual values updated.
The T-blossoms additionally need to have their _offset<sub>B</sub>_ variables updated
to keep the vertex dual values consistent.
For S-blossoms that lose their labels, the modified vertex dual variables are updated directly.
The various priority queues also need updating.
Former T-blossoms must be removed from the priority queue for _&delta;<sub>4</sub>_.
Edges incident on former S-vertices must be removed from the priority queues for _&delta;<sub>3</sub>_ and _&delta;<sub>2</sub>_.
Finally, S-vertices that become unlabeled need to construct a proper priority queue
of incident edges to other S-vertices for _&delta;<sub>2</sub>_ tracking.
This involves visiting every incident edge of every vertex in each S-blossom that loses its label.
## Run time of the algorithm
Every stage of the algorithm either increases the number of matched vertices by 2 or
ends the matching.
Therefore the number of stages is at most _n/2_.
Every stage runs in _O(n<sup>2</sup>)_ steps, therefore the complete algorithm runs in
_O(n<sup>3</sup>)_ steps.
During each stage, edge scanning is driven by the queue _Q_.
Every vertex enters _Q_ at most once.
Each vertex that enters _Q_ has its incident edges scanned, causing every edge in the graph
to be scanned at most twice per stage.
Scanning an edge is done in constant time, unless it leads to the discovery of a blossom
or an augmenting path, which will be separately accounted for.
Therefore edge scanning needs _O(m)_ steps per stage.
Every stage runs in time _O((n + m) log n)_, therefore the complete algorithm runs in
time _O(n (n + m) log n)_.
Creating a blossom reduces the number of top-level blossoms by at least 2,
thus limiting the number of simultaneously existing blossoms to _O(n)_.
Blossoms that are created during a stage become S-blossoms and survive until the end of that stage,
therefore _O(n)_ blossoms are created during a stage.
Creating a blossom with _k_ sub-blossoms reduces the number of top-level blossoms by _k-1_,
thus limiting the total number of sub-blossoms that can be involved in blossom creation
during a stage to _O(n)_.
Creating a blossom involves tracing the alternating path to the closest common ancestor,
and some bookkeeping per sub-blossom,
and inserting new S-vertices _Q_,
all of which can be done in _O(n)_ steps per blossom creation.
The cost of managing least-slack edges between S-blossoms will be separately accounted for.
Therefore blossom creation needs _O(n<sup>2</sup>)_ steps per stage
(excluding least-slack edge management).
which takes time _O(k log n)_ for a blossom with _k_ sub-blossoms.
It also involves bookkeeping per sub-blossom, which takes time _O(log n)_ per sub-blossom.
It also involves relabeling former T-vertices as S-vertices, but I account for that
time separately below so I can ignore it here.
It also involves merging the concatenable queues which track the vertices in top-level blossoms.
Merging two queues takes time _O(log n)_, therefore merging the queues of all sub-blossoms
takes time _O(k log n)_.
Creating a blossom thus takes time _O(k log n)_.
Blossom creation thus takes total time _O(n log n)_ per stage.
As part of creating a blossom, a list _L<sub>B</sub>_ of least-slack edges must be formed.
This involves processing every element of all least-slack edge lists of its sub-blossoms,
and removing redundant edges from the merged list.
Merging and removing redundant edges can be done in one sweep via a temporary array indexed
by target blossom.
Collect the least-slack edges of the sub-blossoms into this array,
indexed by the target blossom of the edge,
keeping only the edge with lowest slack per target blossom.
Then convert the array back into a list by removing unused indices.
This takes _O(1)_ steps per candidate edge, plus _O(n)_ steps to manage the temporary array.
I choose to shift the cost of collecting the candidate edges from the sub-blossoms to
the actions that inserted those edges into the sub-blossom lists.
There are two processes which insert edges into _L<sub>B</sub>_: edge scanning and blossom
creation.
Edge scanning inserts each graph edge at most twice per stage for a total cost of _O(m)_ steps
per stage.
Blossom creation inserts at most _O(n)_ edges per blossom creation.
Therefore the total cost of S-blossom least-slack edge management is
_O(m + n<sup>2</sup>) = O(n<sup>2</sup>)_ steps per stage.
During each stage, a blossom becomes an S-blossom or T-blossom at most once.
A blossom also becomes unlabeled at most once, at the end of the stage.
Changing the label of a blossom takes some simple bookkeeping, as well as operations
on priority queues (_&delta;<sub>4</sub>_ for T-blossoms, _&delta;<sub>2</sub>_ for unlabeled
blossoms) which take time _O(log n)_ per blossom.
Assigning label S or removing label S also involves work for the vertices in the blossom
and their edges, but I account for that time separately below so I can ignore it here.
Blossom labeling thus takes total time _O(n log n)_ per stage.
The number of blossom expansions during a stage is _O(n)_.
Expanding a blossom involves some bookkeeping per sub-blossom,
and reconstructing the alternating path through the blossom,
and inserting any new S-vertices into _Q_,
all of which can be done in _O(n)_ steps per blossom.
Therefore blossom expansion needs _O(n<sup>2</sup>)_ steps per stage.
During each stage, a vertex becomes an S-vertex at most once, and an S-vertex becomes
unlabeled at most once.
In both cases, the incident edges of the affected vertex are scanned and potentially
added to or removed from priority queues.
This involves finding the top-level blossoms of the endpoints of each edge, which
takes time _O(log n)_ per edge.
The updates to priority queues also take time _O(log n)_ per edge.
Edge scanning thus takes total time _O(m log n)_ per stage.
Note that _m &le; n<sup>2</sup>_ therefore _log m &le; 2 log n_.
This implies that an operation on a priority queue with _m_ elements takes time _O(log n)_.
Expanding a blossom involves some bookkeeping which takes time _O(log n)_ per sub-blossom.
It also involves splitting the concatenable queue that tracks the vertices in top-level blossoms,
which takes time _O(log n)_ per sub-blossom.
In case of a T-blossom, it also involves reconstructing the alternating path through
the blossom which takes time _O(k log n)_ for _k_ sub-blossoms.
Also in case of a T-blossom, some sub-blossoms will become S-blossoms and their
vertices become S-vertices, but I have already accounted for that cost above
so I can ignore it here.
Expanding a blossom thus takes time _O(k log n)_.
Any blossom is involved as a sub-blossom in an expanding blossom at most once per stage.
Blossom expansion thus takes total time _O(n log n)_ per stage.
The length of an augmenting path is _O(n)_.
Tracing the augmenting path and augmenting the matching along the path can be done in _O(n)_ steps.
Augmenting through a blossom takes a number of steps that is proportional in the number of
Tracing the augmenting path and augmenting the matching along the path can be done
in _O(n log n)_ steps.
Augmenting through a blossom takes a number of steps that is proportional to the number of
its sub-blossoms.
Since there are fewer than _n_ non-trivial blossoms, the total cost of augmenting through
blossoms is _O(n)_ steps.
Therefore the total cost of augmenting is _O(n)_ steps per stage.
Augmenting thus takes total time _O(n log n)_ per stage.
A dual variable update limited by _&delta;<sub>1</sub>_ ends the algorithm and therefore
happens at most once.
An update limited by _&delta;<sub>2</sub>_ labels a previously labeled blossom
and therefore happens _O(n)_ times per stage.
An update limited by _&delta;<sub>3</sub>_ either creates a blossom or finds an augmenting path
and therefore happens _O(n)_ times per stage.
An update limited by _&delta;<sub>4</sub>_ expands a blossom and therefore happens
_O(n)_ times per stage.
Therefore the number of dual variable updates is _O(n)_ per stage.
The cost of calculating the _&delta;_ values is _O(n)_ per update as discussed above.
Applying changes to the dual variables can be done by looping over all vertices and looping over
all top-level blossoms in _O(n)_ steps per update.
Therefore the total cost of dual variable updates is _O(n<sup>2</sup>)_ per stage.
A delta step limited by _&delta;<sub>1</sub>_ ends the algorithm and therefore happens at most once.
A _&delta;<sub>2</sub>_ step assigns a label to a previously unlabeled blossom and therefore
happens _O(n)_ times per stage.
A _&delta;<sub>3</sub>_ step either creates a blossom or finds an augmenting path and therefore
happens _O(n)_ times per stage.
A _&delta;<sub>4</sub>_ step expands a blossom and therefore happens _O(n)_ times per stage.
Therefore the number of delta steps is _O(n)_ per stage.
Calculating _&delta;<sub>1</sub>_ takes constant time.
Calculating _&delta;<sub>2</sub>_ and _&delta;<sub>4</sub>_ requires a constant number
of lookups in priority queues which takes time _O(log n)_ per delta step.
During calculation of _&delta;<sub>3</sub>_, it may be necessary to remove stage edges
from the priority queue.
Since every edge is inserted into the priority queue at most once per stage,
at most _O(m)_ edges are removed per stage, which takes total time _O(m log n)_ per stage.
Calculation of _&delta;_ thus takes total time _O((n + m) log n)_ per stage.
Applying updates to dual variables is done in a lazy fashion as discussed above.
The only variable that is updated directly is _&Delta;_, which takes time _O(1)_ per delta step.
Updating dual variables thus takes total time _O(n)_ per stage.
## Implementation details
@ -819,17 +1006,100 @@ Every edge therefore appears in two adjacency lists.
These data structures are initialized at the start of the matching algorithm
and never change while the algorithm runs.
#### Priority queue
Priority queues are used for a number of purposes:
- a priority queue to find the least-slack edge between S-blossoms;
- a priority queue to find the minimum-dual T-blossom;
- a priority queue to find the unlabeled blossom with least-slack edge to an S-blossom;
- a separate priority queue per vertex to find the least-slack edge between that vertex
and any S-vertex.
These queues are implemented as a binary heaps.
This type of queue supports the following operations:
- _insert_ a new element with specified priority in time _O(log n)_;
- find the element with _minimum_ priority in time _O(1)_;
- _delete_ a specified element in time _O(log n)_;
- _change_ the priority of a specified element in time _O(log n)_.
#### Concatenable priority queue
Each top-level blossom maintains a concatenable priority queue containing its vertices.
We use a specific type of concatenable queue that supports the following operations
[[4]](#galil_micali_gabow1986) [[8]](#aho_hopcroft_ullman1974):
- _create_ a new queue containing 1 new element;
- find the element with _minimum_ priority in time _O(1)_;
- _change_ the priority of a given element in time _O(log n)_;
- _merge_ two queues into one new queue in time _O(log n)_;
- _split_ a queue, thus undoing the previous _merge_ step in time _O(log n)_.
The efficient _merge_ and _split_ operations make it possible to adapt the queue during
blossom creation and blossom expansion steps.
The priorities in the queue are used to find, for a given top-level blossom, its vertex
with least-slack edge to an S-blossom.
The concatenable queue is implemented as a balanced tree, specifically a _2-3 tree_.
Each internal node of a 2-3 tree has either 2 or 3 children.
The leaf nodes of the tree represent the elements of the queue.
All leaf nodes are at the same distance from the root.
Each node has a pointer to its parent, and each internal node has pointers to its children.
Each internal node also stores its height (distance to its leaf nodes).
Only leaf nodes have a priority.
However, each internal node maintains a pointer to the leaf node with minimum priority
within its subtree.
As a consequence, the root of the tree has a pointer to the least-priority element in the queue.
To keep this information consistent, any change in the priority of a leaf node must
be followed by updating the internal nodes along a path from the leaf node to the root.
The same must be done when the structure of the tree is adjusted.
The left-to-right order of the leaf nodes is preserved during all operations, including _merge_
and _split_.
When trees _A_ and _B_ are merged, the sequence of leaf nodes in the merged tree will consist of
the leaf nodes of _A_ followed by the leaf nodes of _B_.
Note that the left-to-right order of the leaf nodes is unrelated to the priorities of the elements.
To merge two trees, the root of the smaller tree is inserted as a child of an appropriate node
in the larger tree.
Subsequent adjustments are needed restore the consistency the 2-3 tree and to update
the minimum-element pointers of the internal nodes along a path from the insertion point
to the root of the merged tree.
This can be done in a number of steps proportional to the difference in height between
the two trees, which is in any case _O(log n)_.
To split a tree, a _split node_ is identified: the left-most leaf node that must end up
in the right-side tree after splitting.
Internal nodes are deleted along the path from the _split node_ to the root of the tree.
This creates a forest of disconnected subtrees on the left side of the path,
and a similar forest of subtrees on the right side of the split path.
The left-side subtrees are reassembled into a single tree through a series of _merge_ steps.
Although _O(log n)_ merge steps may be needed, the total time required for reassembly
is also _O(log n)_ because each merge step combines trees of similar height.
A similar reassembly is done for the forest on the right side of the split path.
The concatenable queues have an additional purpose in the matching algorithm:
finding the top-level blossom that contains a given vertex.
To do this, we assign a _name_ to each concatenable queue instance, which is simply
a pointer to the top-level blossom that maintains the queue.
An extra operation is defined:
_find_ the name of the queue instance that contains a given element in time _O(log n)_.
Implementing the _find_ operation is easy:
Starting at the leaf node that represents the element, follow _parent_ pointers
to the root of the tree.
The root node contains the name of the queue.
#### General data
`vertex_mate[x] = y` if the edge between vertex _x_ and vertex _y_ is matched. <br>
`vertex_mate[x] = -1` if vertex _x_ is unmatched.
`vertex_top_blossom[x] =` pointer to _B(x)_, the top-level blossom that contains vertex _x_.
`vertex_dual[x]` holds the modified vertex dual _u'<sub>x</sub>_.
`vertex_dual[x]` holds the value of _u<sub>x</sub>_.
A FIFO queue holds vertex indices of S-vertices whose edges have not yet been scanned.
Vertices are inserted in this queue as soon as their top-level blossom gets label S.
A global list holds vertex indices of S-vertices whose edges have not yet been scanned.
Vertices are inserted in this list when their top-level blossom gets label S.
#### Blossoms
@ -842,56 +1112,28 @@ Both types of blossoms are represented as class instances with the following att
* `B.label` is `S` or `T` or `None`
* `B.tree_edge = (x, y)` if _B_ is a labeled top-level blossom, where _y_ is a vertex in _B_
and _(x, y)_ is the edge that links _B_ to its parent in the alternating tree.
* `B.tree_blossoms` points to a list of blossoms in the same alternating tree, if _B_
is a labeled top-level blossom.
* `B.vertex_dual_offset` holds the pending change to vertex duals _offset<sub>B</sub>_.
A non-trivial blossom additionally has the following attributes:
* `B.subblossoms` is an array of pointers to the sub-blossoms of _B_,
starting with the sub-blossom that contains the base vertex.
* `B.edges` is an array of alternating edges connecting the sub-blossoms.
* `B.dual_var` holds the value of _z<sub>B</sub>_.
* `B.dual_var` holds the modified blossom dual _z'<sub>B</sub>_.
Single-vertex blossoms are kept in an array indexed by vertex index. <br>
Non-trivial blossoms are kept in a separate array. <br>
Non-trivial blossoms are kept in a separate list. <br>
These arrays are used to iterate over blossoms and to find the trivial blossom
that consists of a given vertex.
#### Least-slack edge tracking
`vertex_best_edge[x]` is an array holding _e<sub>x</sub>_, the edge index of
the least-slack edge between vertex _x_ and any S-vertex, or -1 if there is no such edge.
This value is only meaningful if _x_ is a T-vertex or unlabeled vertex.
`B.best_edge` is a blossom attribute holding _e<sub>B</sub>_, the edge index of the least-slack
edge between blossom _B_ and any other S-blossom, or -1 if there is no such edge.
This value is only meaningful if _B_ is a top-level S-blossom.
For non-trivial S-blossoms _B_, attribute `B.best_edge_set` holds the list _L<sub>B</sub>_
of potential least-slack edges to other blossoms.
This list is not maintained for single-vertex blossoms, since _L<sub>B</sub>_ of a single vertex
can be efficiently constructed from its adjacency list.
#### Memory usage
The data structures described above use a constant amount of memory per vertex and per edge
and per blossom.
Therefore the total memory requirement is _O(m + n)_.
The memory usage of _L<sub>B</sub>_ is a little tricky.
Any given list _L<sub>B</sub>_ can have length _O(n)_, and _O(n)_ of these lists can exist
simultaneously.
Naively allocating space for _O(n)_ elements per list will drive memory usage
up to _O(n<sup>2</sup>)_.
However, at any moment, an edge can be in at most two of these lists, therefore the sum
of the lengths of these lists is limited to _O(m)_.
A possible solution is to implement the _L<sub>B</sub>_ as linked lists.
### Performance critical routines
Calculations that happen very frequently in the algorithm are:
determining the top-level blossom of a given vertex, and calculating the slack of a given edge.
These calculations must run in constant time per call in any case, but it makes sense to put
some extra effort into making these calculations _fast_.
### Recursion
Certain tasks in the algorithm are recursive in nature:
@ -948,59 +1190,41 @@ Proof by induction that all vertex duals are multiples of 0.5 and all blossom du
- Blossom duals increase or decrease by _2\*&delta;_,
therefore updated blossom duals are still integers.
The value of vertex dual variables and blossom dual variables never exceeds the
greatest edge weight in the graph.
This may be helpful for choosing an integer data type for the dual variables.
It is useful to know that (modified) dual variables and (modified) edge slacks
are limited to a finite range of values which depends on the maximum edge weight.
This may be helpful when choosing an integer data type for these variables.
(Alternatively, choose a programming language with unlimited integer range.
This is perhaps the thing I love most about Python.)
Proof that dual variables do not exceed _max-weight_:
- Vertex dual variables start at _u<sub>x</sub> = 0.5\*max-weight_.
- While the algorithm runs, there is at least one vertex which has been unmatched
since the beginning.
This vertex has always had label S, therefore its dual always decreased by _&delta;_
during a dual variable update.
Since it started at _0.5\*max-weight_ and can not become negative,
the sum of _&delta;_ over all dual variable updates can not exceed _0.5\*max-weight_.
- Vertex dual variables increase by at most _&delta;_ per update.
Therefore no vertex dual can increase by more than _0.5\*max-weight_ in total.
Therefore no vertex dual can exceed _max-weight_.
- Blossom dual variables start at _z<sub>B</sub> = 0_.
- Blossom dual variables increase by at most _2\*&delta;_ per update.
Therefore no blossom dual can increase by more than _max-weight_ in total.
Therefore no blossom dual can exceed _max-weight_.
- The value of _&Delta;_ (sum over _&delta;_ steps) does not exceed _maxweight / 2_.
Proof:
- Vertex dual variables start at _u<sub>x</sub> = maxweight_ / 2.
- While the algorithm runs, there is at least one vertex which has been unmatched
since the beginning.
This vertex has always had label S, therefore its dual is _maxweight/2 - &Delta;_.
Vertex deltas can not be negative, therefore _&Delta; &le; maxweight/2_.
- Vertex duals are limited to the range 0 to _maxweight_.
- Blossom duals are limited to the range 0 to _maxweight_.
- Edge slack is limited to the range 0 to _2\*maxweight_.
- Modified vertex duals are limited to the range 0 to _1.5\*maxweight_.
- Modified blossom duals are limited to the range _-maxweight to 2\*maxweight_.
- Modified edge slack is limited to the range 0 to _3\*maxweight_.
- Dual offsets are limited to the range _-maxweight/2_ to _maxweight/2_.
### Handling floating point edge weights
Floating point calculations are subject to rounding errors.
This has two consequences for the matching algorithm:
As a result, the algorithm may return a matching which has slightly lower weight than
the actual maximum weight.
- The algorithm may return a matching which has slightly lower weight than
the actual maximum weight.
The algorithm will allways return a valid matching, even if rounding errors occur.
Floating point comparisons affect which actions are taken during delta steps,
and thus eventually determine which edges are matched.
But the overall structure of the algorithm guarantees that it will eventually return
a valid (if possibly suboptimal) matching.
- The algorithm may not reliably recognize tight edges.
To check whether an edge is tight, its slack is compared to zero.
Rounding errors may cause the slack to appear positive even when an exact calculation
would show it to be zero.
The slack of some edges may even become slightly negative.
I believe this does not affect the correctness of the algorithm.
An edge that should be tight but is not recognized as tight due to rounding errors,
can be pulled tight through an additional dual variable update.
As side-effect of this update, the edge will immediately be used to grow the alternating tree,
or construct a blossom or augmenting path.
This mechanism allows the algorithm to make progress, even if slack comparisons
are repeatedly thrown off by rounding errors.
Rounding errors may cause the algorithm to perform more dual variable updates
than strictly necessary.
But this will still not cause the run time of the algorithm to exceed _O(n<sup>3</sup>)_.
It seems to me that the matching algorithm is stable for floating point weights.
And it seems to me that it returns a matching which is close to optimal,
and could have been optimal if edge weights were changed by small amounts.
I must admit these arguments are mostly based on intuition.
The most challenging cases are probably graphs with edge weights that differ by many orders
of magnitude.
Unfortunately I don't know how to properly analyze the floating point accuracy of this algorithm.
### Finding a maximum weight matching out of all maximum cardinality matchings
@ -1057,7 +1281,14 @@ changing all weights by the same amount doesn't change which of these matchings
([link](https://dl.acm.org/doi/abs/10.5555/320176.320229))
([pdf](https://dl.acm.org/doi/pdf/10.5555/320176.320229))
7. <a id="mehlhorn_schafer2002"></a>
Kurt Mehlhorn, Guido Schäfer, "Implementation of O(nm log(n)) Weighted Matchings in General Graphs: The Power of Data Structures", _Journal of Experimental Algorithmics vol. 7_, 2002.
([link](https://dl.acm.org/doi/10.1145/944618.944622))
8. <a id="aho_hopcroft_ullman1974"></a>
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
_The Design and Analysis of Computer Algorithms_, Addison-Wesley, 1974.
---
Written in 2023 by Joris van Rantwijk.
Written in 2023-2024 by Joris van Rantwijk.
This work is licensed under [CC BY-ND 4.0](https://creativecommons.org/licenses/by-nd/4.0/).

View File

@ -13,6 +13,7 @@ disable=consider-using-in,
too-many-lines,
too-many-locals,
too-many-nested-blocks,
too-many-positional-arguments,
too-many-public-methods,
too-many-return-statements,
too-many-statements,

View File

@ -0,0 +1,11 @@
"""
Algorithm for finding a maximum weight matching in general graphs.
"""
__all__ = ["maximum_weight_matching",
"adjust_weights_for_maximum_cardinality_matching",
"MatchingError"]
from .algorithm import (maximum_weight_matching,
adjust_weights_for_maximum_cardinality_matching,
MatchingError)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,634 @@
"""Data structures for matching."""
from __future__ import annotations
from typing import Generic, Optional, TypeVar
_NameT = TypeVar("_NameT")
_NameT2 = TypeVar("_NameT2")
_ElemT = TypeVar("_ElemT")
_ElemT2 = TypeVar("_ElemT2")
class ConcatenableQueue(Generic[_NameT, _ElemT]):
"""Priority queue supporting efficient merge and split operations.
This is a combination of a disjoint set and a priority queue.
A queue has a "name", which can be any Python object.
Each element has associated "data", which can be any Python object.
Each element has a priority.
The following operations can be done efficiently:
- Create a new queue containing one new element.
- Find the name of the queue that contains a given element.
- Change the priority of a given element.
- Find the element with lowest priority in a given queue.
- Merge two or more queues.
- Undo a previous merge step.
This data structure is implemented as a 2-3 tree with minimum-priority
tracking added to it.
"""
__slots__ = ("name", "tree", "first_node", "sub_queues")
class BaseNode(Generic[_NameT2, _ElemT2]):
"""Node in the 2-3 tree."""
__slots__ = ("owner", "min_node", "height", "parent", "childs")
def __init__(self,
min_node: ConcatenableQueue.Node[_NameT2, _ElemT2],
height: int
) -> None:
"""Initialize a new node."""
self.owner: Optional[ConcatenableQueue[_NameT2, _ElemT2]] = None
self.min_node = min_node
self.height = height
self.parent: Optional[ConcatenableQueue.BaseNode[_NameT2,
_ElemT2]]
self.parent = None
self.childs: list[ConcatenableQueue.BaseNode[_NameT2, _ElemT2]]
self.childs = []
class Node(BaseNode[_NameT2, _ElemT2]):
"""Leaf node in the 2-3 tree, representing an element in the queue."""
__slots__ = ("data", "prio")
def __init__(self, data: _ElemT2, prio: float) -> None:
"""Initialize a new leaf node.
This method should not be called directly.
Instead, call ConcatenableQueue.insert().
"""
super().__init__(min_node=self, height=0)
self.data = data
self.prio = prio
def find(self) -> _NameT2:
"""Return the name of the queue that contains this element.
This function takes time O(log(n)).
"""
node: ConcatenableQueue.BaseNode[_NameT2, _ElemT2] = self
while node.parent is not None:
node = node.parent
assert node.owner is not None
return node.owner.name
def set_prio(self, prio: float) -> None:
"""Change the priority of this element.
This function takes time O(log(n)).
"""
self.prio = prio
node = self.parent
while node is not None:
min_node = node.childs[0].min_node
for child in node.childs[1:]:
if child.min_node.prio < min_node.prio:
min_node = child.min_node
node.min_node = min_node
node = node.parent
def __init__(self, name: _NameT) -> None:
"""Initialize an empty queue.
This function takes time O(1).
Parameters:
name: Name to assign to the new queue.
"""
self.name = name
self.tree: Optional[ConcatenableQueue.BaseNode[_NameT, _ElemT]] = None
self.first_node: Optional[ConcatenableQueue.Node[_NameT, _ElemT]]
self.first_node = None
self.sub_queues: list[ConcatenableQueue[_NameT, _ElemT]] = []
def clear(self) -> None:
"""Remove all elements from the queue.
This function takes time O(n).
"""
node = self.tree
self.tree = None
self.first_node = None
self.sub_queues = []
# Wipe pointers to enable refcounted garbage collection.
if node is not None:
node.owner = None
while node is not None:
node.min_node = None # type: ignore
prev_node = node
if node.childs:
node = node.childs.pop()
else:
node = node.parent
prev_node.parent = None
def insert(self, elem: _ElemT, prio: float) -> Node[_NameT, _ElemT]:
"""Insert an element into the empty queue.
This function can only be used if the queue is empty.
Non-empty queues can grow only by merging.
This function takes time O(1).
Parameters:
elem: Element to insert.
prio: Initial priority of the new element.
"""
assert self.tree is None
self.tree = ConcatenableQueue.Node(elem, prio)
self.tree.owner = self
self.first_node = self.tree
return self.tree
def min_prio(self) -> float:
"""Return the minimum priority of any element in the queue.
The queue must be non-empty.
This function takes time O(1).
"""
node = self.tree
assert node is not None
return node.min_node.prio
def min_elem(self) -> _ElemT:
"""Return the element with minimum priority.
The queue must be non-empty.
This function takes time O(1).
"""
node = self.tree
assert node is not None
return node.min_node.data
def merge(self,
sub_queues: list[ConcatenableQueue[_NameT, _ElemT]]
) -> None:
"""Merge the specified queues.
This queue must inititially be empty.
All specified sub-queues must initially be non-empty.
This function removes all elements from the specified sub-queues
and adds them to this queue.
After merging, this queue retains a reference to the list of
sub-queues.
This function takes time O(len(sub_queues) * log(n)).
"""
assert self.tree is None
assert not self.sub_queues
assert sub_queues
# Keep the list of sub-queues.
self.sub_queues = sub_queues
# Move the root node from the first sub-queue to this queue.
# Clear its owner pointer.
self.tree = sub_queues[0].tree
self.first_node = sub_queues[0].first_node
assert self.tree is not None
sub_queues[0].tree = None
self.tree.owner = None
# Merge remaining sub-queues.
for sub in sub_queues[1:]:
# Pull the root node from the sub-queue.
# Clear its owner pointer.
subtree = sub.tree
assert subtree is not None
assert subtree.owner is sub
subtree.owner = None
# Merge our current tree with the tree from the sub-queue.
self.tree = self._join(self.tree, subtree)
# Put the owner pointer in the root node.
self.tree.owner = self
def split(self) -> None:
"""Undo the merge step that filled this queue.
Remove all elements from this queue and put them back in
the sub-queues from which they came.
After splitting, this queue will be empty.
This function takes time O(k * log(n)).
"""
assert self.tree is not None
assert self.sub_queues
# Clear the owner pointer from the root node.
assert self.tree.owner is self
self.tree.owner = None
# Split the tree to reconstruct each sub-queue.
for sub in self.sub_queues[:0:-1]:
assert sub.first_node is not None
(tree, rtree) = self._split_tree(sub.first_node)
# Assign the right tree to the sub-queue.
sub.tree = rtree
rtree.owner = sub
# Put the remaining tree in the first sub-queue.
self.sub_queues[0].tree = tree
tree.owner = self.sub_queues[0]
# Make this queue empty.
self.tree = None
self.first_node = None
self.sub_queues = []
@staticmethod
def _repair_node(node: BaseNode[_NameT, _ElemT]) -> None:
"""Repair min_prio attribute of an internal node."""
min_node = node.childs[0].min_node
for child in node.childs[1:]:
if child.min_node.prio < min_node.prio:
min_node = child.min_node
node.min_node = min_node
@staticmethod
def _new_internal_node(ltree: BaseNode[_NameT, _ElemT],
rtree: BaseNode[_NameT, _ElemT]
) -> BaseNode[_NameT, _ElemT]:
"""Create a new internal node with 2 child nodes."""
assert ltree.height == rtree.height
height = ltree.height + 1
if ltree.min_node.prio <= rtree.min_node.prio:
min_node = ltree.min_node
else:
min_node = rtree.min_node
node = ConcatenableQueue.BaseNode(min_node, height)
node.childs = [ltree, rtree]
ltree.parent = node
rtree.parent = node
return node
def _join_right(self,
ltree: BaseNode[_NameT, _ElemT],
rtree: BaseNode[_NameT, _ElemT]
) -> BaseNode[_NameT, _ElemT]:
"""Join two trees together.
The initial left subtree must be higher than the right subtree.
Return the root node of the joined tree.
"""
# Descend down the right spine of the left tree until we
# reach a node just above the right tree.
node = ltree
while node.height > rtree.height + 1:
node = node.childs[-1]
assert node.height == rtree.height + 1
# Find a node in the left tree to insert the right tree as child.
while len(node.childs) == 3:
# This node already has 3 childs so we can not add the right tree.
# Rearrange into 2 nodes with 2 childs each, then solve it
# at the parent level.
#
# N N R'
# / | \ / \ / \
# / | \ ---> / \ / \
# A B C R A B C R
#
child = node.childs.pop()
self._repair_node(node)
rtree = self._new_internal_node(child, rtree)
if node.parent is None:
# Create a new root node.
return self._new_internal_node(node, rtree)
node = node.parent
# Insert the right tree as child of this node.
assert len(node.childs) < 3
node.childs.append(rtree)
rtree.parent = node
# Repair min-prio pointers of ancestors.
while True:
self._repair_node(node)
if node.parent is None:
break
node = node.parent
return node
def _join_left(self,
ltree: BaseNode[_NameT, _ElemT],
rtree: BaseNode[_NameT, _ElemT]
) -> BaseNode[_NameT, _ElemT]:
"""Join two trees together.
The initial left subtree must be lower than the right subtree.
Return the root node of the joined tree.
"""
# Descend down the left spine of the right tree until we
# reach a node just above the left tree.
node = rtree
while node.height > ltree.height + 1:
node = node.childs[0]
assert node.height == ltree.height + 1
# Find a node in the right tree to insert the left tree as child.
while len(node.childs) == 3:
# This node already has 3 childs so we can not add the left tree.
# Rearrange into 2 nodes with 2 childs each, then solve it
# at the parent level.
#
# N L' N
# / | \ / \ / \
# / | \ ---> / \ / \
# L A B C L A B C
#
child = node.childs.pop(0)
self._repair_node(node)
ltree = self._new_internal_node(ltree, child)
if node.parent is None:
# Create a new root node.
return self._new_internal_node(ltree, node)
node = node.parent
# Insert the left tree as child of this node.
assert len(node.childs) < 3
node.childs.insert(0, ltree)
ltree.parent = node
# Repair min-prio pointers of ancestors.
while True:
self._repair_node(node)
if node.parent is None:
break
node = node.parent
return node
def _join(self,
ltree: BaseNode[_NameT, _ElemT],
rtree: BaseNode[_NameT, _ElemT]
) -> BaseNode[_NameT, _ElemT]:
"""Join two trees together.
The left and right subtree must be consistent 2-3 trees.
Initial parent pointers of these subtrees are ignored.
Return the root node of the joined tree.
"""
if ltree.height > rtree.height:
return self._join_right(ltree, rtree)
elif ltree.height < rtree.height:
return self._join_left(ltree, rtree)
else:
return self._new_internal_node(ltree, rtree)
def _split_tree(self,
split_node: BaseNode[_NameT, _ElemT]
) -> tuple[BaseNode[_NameT, _ElemT],
BaseNode[_NameT, _ElemT]]:
"""Split a tree on a specified node.
Two new trees will be constructed.
Leaf nodes to the left of "split_node" will go to the left tree.
Leaf nodes to the right of "split_node", and "split_node" itself,
will go to the right tree.
Return tuple (ltree, rtree).
"""
# Detach "split_node" from its parent.
# Assign it to the right tree.
parent = split_node.parent
split_node.parent = None
# The left tree is initially empty.
# The right tree initially contains only "split_node".
ltree: Optional[ConcatenableQueue.BaseNode[_NameT, _ElemT]] = None
rtree = split_node
# Walk up to the root of the tree.
# On the way up, detach each node from its parent and join its
# child nodes to the appropriate tree.
node = split_node
while parent is not None:
# Ascend to the parent node.
child = node
node = parent
parent = node.parent
# Detach "node" from its parent.
node.parent = None
if len(node.childs) == 3:
if node.childs[0] is child:
# "node" has 3 child nodes.
# Its left subtree has already been split.
# Turn it into a 2-node and join it to the right tree.
node.childs.pop(0)
self._repair_node(node)
rtree = self._join(rtree, node)
elif node.childs[2] is child:
# "node" has 3 child nodes.
# Its right subtree has already been split.
# Turn it into a 2-node and join it to the left tree.
node.childs.pop()
self._repair_node(node)
if ltree is None:
ltree = node
else:
ltree = self._join(node, ltree)
else:
# "node has 3 child nodes.
# Its middle subtree has already been split.
# Join its left child to the left tree, and its right
# child to the right tree, then delete "node".
node.childs[0].parent = None
node.childs[2].parent = None
if ltree is None:
ltree = node.childs[0]
else:
ltree = self._join(node.childs[0], ltree)
rtree = self._join(rtree, node.childs[2])
elif node.childs[0] is child:
# "node" has 2 child nodes.
# Its left subtree has already been split.
# Join its right child to the right tree, then delete "node".
node.childs[1].parent = None
rtree = self._join(rtree, node.childs[1])
else:
# "node" has 2 child nodes.
# Its right subtree has already been split.
# Join its left child to the left tree, then delete "node".
node.childs[0].parent = None
if ltree is None:
ltree = node.childs[0]
else:
ltree = self._join(node.childs[0], ltree)
assert ltree is not None
return (ltree, rtree)
class PriorityQueue(Generic[_ElemT]):
"""Priority queue based on a binary heap."""
__slots__ = ("heap", )
class Node(Generic[_ElemT2]):
"""Node in the priority queue."""
__slots__ = ("index", "prio", "data")
def __init__(
self,
index: int,
prio: float,
data: _ElemT2
) -> None:
self.index = index
self.prio = prio
self.data = data
def __init__(self) -> None:
"""Initialize an empty queue."""
self.heap: list[PriorityQueue.Node[_ElemT]] = []
def clear(self) -> None:
"""Remove all elements from the queue.
This function takes time O(n).
"""
self.heap.clear()
def empty(self) -> bool:
"""Return True if the queue is empty."""
return (not self.heap)
def find_min(self) -> Node[_ElemT]:
"""Return the minimum-priority node.
This function takes time O(1).
"""
if not self.heap:
raise IndexError("Queue is empty")
return self.heap[0]
def _sift_up(self, index: int) -> None:
"""Repair the heap along an ascending path to the root."""
node = self.heap[index]
prio = node.prio
pos = index
while pos > 0:
tpos = (pos - 1) // 2
tnode = self.heap[tpos]
if tnode.prio <= prio:
break
tnode.index = pos
self.heap[pos] = tnode
pos = tpos
if pos != index:
node.index = pos
self.heap[pos] = node
def _sift_down(self, index: int) -> None:
"""Repair the heap along a descending path."""
num_elem = len(self.heap)
node = self.heap[index]
prio = node.prio
pos = index
while True:
tpos = 2 * pos + 1
if tpos >= num_elem:
break
tnode = self.heap[tpos]
qpos = tpos + 1
if qpos < num_elem:
qnode = self.heap[qpos]
if qnode.prio <= tnode.prio:
tpos = qpos
tnode = qnode
if tnode.prio >= prio:
break
tnode.index = pos
self.heap[pos] = tnode
pos = tpos
if pos != index:
node.index = pos
self.heap[pos] = node
def insert(self, prio: float, data: _ElemT) -> Node:
"""Insert a new element into the queue.
This function takes time O(log(n)).
Returns:
Node that represents the new element.
"""
new_index = len(self.heap)
node = self.Node(new_index, prio, data)
self.heap.append(node)
self._sift_up(new_index)
return node
def delete(self, elem: Node[_ElemT]) -> None:
"""Delete the specified element from the queue.
This function takes time O(log(n)).
"""
index = elem.index
assert self.heap[index] is elem
node = self.heap.pop()
if index < len(self.heap):
node.index = index
self.heap[index] = node
if node.prio < elem.prio:
self._sift_up(index)
elif node.prio > elem.prio:
self._sift_down(index)
def decrease_prio(self, elem: Node[_ElemT], prio: float) -> None:
"""Decrease the priority of an existing element in the queue.
This function takes time O(log(n)).
"""
assert self.heap[elem.index] is elem
assert prio <= elem.prio
elem.prio = prio
self._sift_up(elem.index)
def increase_prio(self, elem: Node[_ElemT], prio: float) -> None:
"""Increase the priority of an existing element in the queue.
This function takes time O(log(n)).
"""
assert self.heap[elem.index] is elem
assert prio >= elem.prio
elem.prio = prio
self._sift_down(elem.index)

View File

15
python/pyproject.toml Normal file
View File

@ -0,0 +1,15 @@
[build-system]
requires = ["setuptools >= 61.0"]
build-backend = "setuptools.build_meta"
[project]
name = "mwmatching"
version = "3.0"
authors = [{name = "Joris van Rantwijk"}]
requires-python = ">= 3.7"
classifiers = [
"License :: OSI Approved :: MIT License",
"Private :: Do Not Upload"
]

View File

@ -18,7 +18,7 @@ from mwmatching import (maximum_weight_matching,
adjust_weights_for_maximum_cardinality_matching)
def parse_int_or_float(s: str) -> int|float:
def parse_int_or_float(s: str) -> float:
"""Convert a string to integer or float value."""
try:
return int(s)
@ -27,7 +27,7 @@ def parse_int_or_float(s: str) -> int|float:
return float(s)
def read_dimacs_graph(f: TextIO) -> list[tuple[int, int, int|float]]:
def read_dimacs_graph(f: TextIO) -> list[tuple[int, int, float]]:
"""Read a graph in DIMACS edge list format."""
edges: list[tuple[int, int, float]] = []
@ -70,7 +70,7 @@ def read_dimacs_graph(f: TextIO) -> list[tuple[int, int, int|float]]:
return edges
def read_dimacs_graph_file(filename: str) -> list[tuple[int, int, int|float]]:
def read_dimacs_graph_file(filename: str) -> list[tuple[int, int, float]]:
"""Read a graph from file or stdin."""
if filename:
with open(filename, "r", encoding="ascii") as f:
@ -87,11 +87,11 @@ def read_dimacs_graph_file(filename: str) -> list[tuple[int, int, int|float]]:
def read_dimacs_matching(
f: TextIO
) -> tuple[int|float, list[tuple[int, int]]]:
) -> tuple[float, list[tuple[int, int]]]:
"""Read a matching solution in DIMACS format."""
have_weight = False
weight: int|float = 0
weight: float = 0
pairs: list[tuple[int, int]] = []
for line in f:
@ -138,7 +138,7 @@ def read_dimacs_matching(
def read_dimacs_matching_file(
filename: str
) -> tuple[int|float, list[tuple[int, int]]]:
) -> tuple[float, list[tuple[int, int]]]:
"""Read a matching from file."""
with open(filename, "r", encoding="ascii") as f:
try:
@ -149,7 +149,7 @@ def read_dimacs_matching_file(
def write_dimacs_matching(
f: TextIO,
weight: int|float,
weight: float,
pairs: list[tuple[int, int]]
) -> None:
"""Write a matching solution in DIMACS format."""
@ -165,7 +165,7 @@ def write_dimacs_matching(
def write_dimacs_matching_file(
filename: str,
weight: int|float,
weight: float,
pairs: list[tuple[int, int]]
) -> None:
"""Write a matching to file or stdout."""
@ -177,15 +177,15 @@ def write_dimacs_matching_file(
def calc_matching_weight(
edges: list[tuple[int, int, int|float]],
edges: list[tuple[int, int, float]],
pairs: list[tuple[int, int]]
) -> int|float:
) -> float:
"""Verify that the matching is valid and calculate its weight.
Matched pairs are assumed to be in the same order as edges.
"""
weight: int|float = 0
weight: float = 0
edge_pos = 0
for pair in pairs:
@ -267,7 +267,7 @@ def verify_matching(filename: str, maxcard: bool, wfactor: float) -> bool:
edges = read_dimacs_graph_file(filename)
(gold_weight, gold_pairs) = read_dimacs_matching_file(matching_filename)
edges_adj: Sequence[tuple[int, int, int|float]] = edges
edges_adj: Sequence[tuple[int, int, float]] = edges
if wfactor != 1.0:
if wfactor.is_integer():

0
python/tests/__init__.py Normal file
View File

View File

@ -4,10 +4,12 @@ import math
import unittest
from unittest.mock import Mock
import mwmatching
from mwmatching import (
maximum_weight_matching as mwm,
adjust_weights_for_maximum_cardinality_matching as adj)
from mwmatching.algorithm import (
MatchingError, GraphInfo, Blossom, NonTrivialBlossom, MatchingContext,
verify_optimum)
class TestMaximumWeightMatching(unittest.TestCase):
@ -243,6 +245,35 @@ class TestMaximumWeightMatching(unittest.TestCase):
mwm([(1,2,19), (1,4,17), (1,5,19), (2,3,15), (2,5,21), (4,6,18), (4,7,11), (5,6,19)]),
[(1,5), (2,3), (4,6)])
def test52_augment_blossom_nested2(self):
"""augment nested blossoms"""
#
# [4]--15 19--[2]
# | \ / |
# 16 [1] 21
# | / \ |
# [5]--17 19--[3]
# |
# 10
# |
# [6]
#
self.assertEqual(
mwm([(1,2,19), (1,3,19), (1,4,15), (1,5,17), (2,3,21), (4,5,16), (5,6,10)]),
[(1,4), (2,3), (5,6)])
def test61_triangles_n9(self):
"""t.f 9 nodes"""
#
# [1]------[4] [7]
# | \ | \ | \
# | [3] | [6] | [9]
# | / | / | /
# [2] [5]------[8]
#
result = mwm([(1,2,1), (1,3,1), (2,3,1), (4,5,1), (4,6,1), (5,6,1), (7,8,1), (7,9,1), (8,9,1), (1,4,1), (5,8,1)])
self.assertEqual(len(result), 4)
def test_fail_bad_input(self):
"""bad input values"""
with self.assertRaises(TypeError):
@ -402,10 +433,10 @@ class TestMaximumCardinalityMatching(unittest.TestCase):
class TestGraphInfo(unittest.TestCase):
"""Test _GraphInfo helper class."""
"""Test GraphInfo helper class."""
def test_empty(self):
graph = mwmatching._GraphInfo([])
graph = GraphInfo([])
self.assertEqual(graph.num_vertex, 0)
self.assertEqual(graph.edges, [])
self.assertEqual(graph.adjacent_edges, [])
@ -420,8 +451,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate,
vertex_dual_2x,
nontrivial_blossom):
ctx = Mock(spec=mwmatching._MatchingContext)
ctx.graph = mwmatching._GraphInfo(edges)
ctx = Mock(spec=MatchingContext)
ctx.graph = GraphInfo(edges)
ctx.vertex_mate = vertex_mate
ctx.vertex_dual_2x = vertex_dual_2x
ctx.nontrivial_blossom = nontrivial_blossom
@ -434,7 +465,7 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 1],
vertex_dual_2x=[0, 20, 2],
nontrivial_blossom=[])
mwmatching._verify_optimum(ctx)
verify_optimum(ctx)
def test_asymmetric_matching(self):
edges = [(0,1,10), (1,2,11)]
@ -443,8 +474,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 0],
vertex_dual_2x=[0, 20, 2],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_nonexistent_matched_edge(self):
edges = [(0,1,10), (1,2,11)]
@ -453,8 +484,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[2, -1, 0],
vertex_dual_2x=[11, 11, 11],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_negative_vertex_dual(self):
edges = [(0,1,10), (1,2,11)]
@ -463,8 +494,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 1],
vertex_dual_2x=[-2, 22, 0],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_unmatched_nonzero_dual(self):
edges = [(0,1,10), (1,2,11)]
@ -473,8 +504,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 1],
vertex_dual_2x=[9, 11, 11],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_negative_edge_slack(self):
edges = [(0,1,10), (1,2,11)]
@ -483,8 +514,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 1],
vertex_dual_2x=[0, 11, 11],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_matched_edge_slack(self):
edges = [(0,1,10), (1,2,11)]
@ -493,8 +524,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[-1, 2, 1],
vertex_dual_2x=[0, 20, 11],
nontrivial_blossom=[])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_negative_blossom_dual(self):
#
@ -503,11 +534,8 @@ class TestVerificationFail(unittest.TestCase):
# \----8-----/
#
edges = [(0,1,7), (0,2,8), (1,2,9), (2,3,6)]
blossom = mwmatching._NonTrivialBlossom(
subblossoms=[
mwmatching._Blossom(0),
mwmatching._Blossom(1),
mwmatching._Blossom(2)],
blossom = NonTrivialBlossom(
subblossoms=[Blossom(0), Blossom(1), Blossom(2)],
edges=[0,2,1])
for sub in blossom.subblossoms:
sub.parent = blossom
@ -517,8 +545,8 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[1, 0, 3, 2],
vertex_dual_2x=[4, 6, 8, 4],
nontrivial_blossom=[blossom])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
def test_blossom_not_full(self):
#
@ -531,11 +559,8 @@ class TestVerificationFail(unittest.TestCase):
# \----2-----/
#
edges = [(0,1,7), (0,2,2), (1,2,5), (0,3,8), (1,4,8)]
blossom = mwmatching._NonTrivialBlossom(
subblossoms=[
mwmatching._Blossom(0),
mwmatching._Blossom(1),
mwmatching._Blossom(2)],
blossom = NonTrivialBlossom(
subblossoms=[Blossom(0), Blossom(1), Blossom(2)],
edges=[0,2,1])
for sub in blossom.subblossoms:
sub.parent = blossom
@ -545,8 +570,62 @@ class TestVerificationFail(unittest.TestCase):
vertex_mate=[3, 4, -1, 0, 1],
vertex_dual_2x=[4, 10, 0, 12, 6],
nontrivial_blossom=[blossom])
with self.assertRaises(mwmatching.MatchingError):
mwmatching._verify_optimum(ctx)
with self.assertRaises(MatchingError):
verify_optimum(ctx)
class TestValueRange(unittest.TestCase):
"""Test graphs that force big values for dual variables or edge slack."""
def test_big_blossom_dual(self):
"""Force modified blossom dual close to 2*maxweight."""
#
# [3]
# / \
# W-4/ \W
# 7 / \
# [1]-----[2]-----[4]
# | W-4
# 5|
# | 1
# [5]-----[6]
#
w = 100000
pairs = mwm([(1,2,7), (2,3,w-4), (2,4,w-4), (2,5,5), (3,4,w), (5,6,1)])
self.assertEqual(pairs, [(1,2), (3,4), (5,6)])
def test_negative_blossom_dual(self):
"""Force modified blossom dual close to -maxweight."""
#
# [3]
# / \
# 5/ \7
# 1 / \
# [1]-----[2]-----[4]
# | 5
# 1|
# | W
# [5]-----[6]
#
w = 100000
pairs = mwm([(1,2,1), (2,3,5), (2,4,5), (2,5,1), (3,4,7), (5,6,w)])
self.assertEqual(pairs, [(1,2), (3,4), (5,6)])
def test_big_edge_slack(self):
"""Force modified edge slack close to 3*maxweight."""
#
# 6 W W-2 5
# [1]-----[2]-----[3]-----[4]-----[5]
# | |
# |1 |1
# | |
# [6]-----[7]-----[8]-----[9]-----[10]
# 6 W W-2 5
#
w = 100000
pairs = mwm([(1,2,6), (1,6,1), (2,3,w), (3,4,w-2), (3,8,1), (4,5,5),
(6,7,6), (7,8,w), (8,9,w-2), (9,10,5)])
self.assertEqual(pairs, [(1,6), (2,3), (4,5), (7,8), (9,10)])
if __name__ == "__main__":

View File

@ -0,0 +1,525 @@
"""Unit tests for data structures."""
import random
import unittest
from mwmatching.datastruct import ConcatenableQueue, PriorityQueue
class TestConcatenableQueue(unittest.TestCase):
"""Test ConcatenableQueue."""
def _check_tree(self, queue):
"""Check tree balancing rules and priority info."""
self.assertIsNone(queue.tree.parent)
self.assertIs(queue.tree.owner, queue)
nodes = [queue.tree]
while nodes:
node = nodes.pop()
if node is not queue.tree:
self.assertIsNone(node.owner)
if node.height == 0:
self.assertEqual(len(node.childs), 0)
self.assertIs(node.min_node, node)
else:
self.assertIn(len(node.childs), (2, 3))
best_node = set()
best_prio = None
for child in node.childs:
self.assertIs(child.parent, node)
self.assertEqual(child.height, node.height - 1)
nodes.append(child)
if ((best_prio is None)
or (child.min_node.prio < best_prio)):
best_node = {child.min_node}
best_prio = child.min_node.prio
elif child.min_node.prio == best_prio:
best_node.add(child.min_node)
self.assertEqual(node.min_node.prio, best_prio)
self.assertIn(node.min_node, best_node)
def test_single(self):
"""Single element."""
q = ConcatenableQueue("Q")
with self.assertRaises(Exception):
q.min_prio()
with self.assertRaises(Exception):
q.min_elem()
n = q.insert("a", 4)
self.assertIsInstance(n, ConcatenableQueue.Node)
self._check_tree(q)
self.assertEqual(n.find(), "Q")
self.assertEqual(q.min_prio(), 4)
self.assertEqual(q.min_elem(), "a")
with self.assertRaises(Exception):
q.insert("x", 1)
n.set_prio(8)
self._check_tree(q)
self.assertEqual(n.find(), "Q")
self.assertEqual(q.min_prio(), 8)
self.assertEqual(q.min_elem(), "a")
q.clear()
def test_simple(self):
"""Simple test, 5 elements."""
q1 = ConcatenableQueue("A")
n1 = q1.insert("a", 5)
q2 = ConcatenableQueue("B")
n2 = q2.insert("b", 6)
q3 = ConcatenableQueue("C")
n3 = q3.insert("c", 7)
q4 = ConcatenableQueue("D")
n4 = q4.insert("d", 4)
q5 = ConcatenableQueue("E")
n5 = q5.insert("e", 3)
q345 = ConcatenableQueue("P")
q345.merge([q3, q4, q5])
self._check_tree(q345)
self.assertEqual(n1.find(), "A")
self.assertEqual(n3.find(), "P")
self.assertEqual(n4.find(), "P")
self.assertEqual(n5.find(), "P")
self.assertEqual(q345.min_prio(), 3)
self.assertEqual(q345.min_elem(), "e")
with self.assertRaises(Exception):
q3.min_prio()
self._check_tree(q345)
n5.set_prio(6)
self._check_tree(q345)
self.assertEqual(q345.min_prio(), 4)
self.assertEqual(q345.min_elem(), "d")
q12 = ConcatenableQueue("Q")
q12.merge([q1, q2])
self._check_tree(q12)
self.assertEqual(n1.find(), "Q")
self.assertEqual(n2.find(), "Q")
self.assertEqual(q12.min_prio(), 5)
self.assertEqual(q12.min_elem(), "a")
q12345 = ConcatenableQueue("R")
q12345.merge([q12, q345])
self._check_tree(q12345)
self.assertEqual(n1.find(), "R")
self.assertEqual(n2.find(), "R")
self.assertEqual(n3.find(), "R")
self.assertEqual(n4.find(), "R")
self.assertEqual(n5.find(), "R")
self.assertEqual(q12345.min_prio(), 4)
self.assertEqual(q12345.min_elem(), "d")
n4.set_prio(8)
self._check_tree(q12345)
self.assertEqual(q12345.min_prio(), 5)
self.assertEqual(q12345.min_elem(), "a")
n3.set_prio(2)
self._check_tree(q12345)
self.assertEqual(q12345.min_prio(), 2)
self.assertEqual(q12345.min_elem(), "c")
q12345.split()
self._check_tree(q12)
self._check_tree(q345)
self.assertEqual(n1.find(), "Q")
self.assertEqual(n2.find(), "Q")
self.assertEqual(n3.find(), "P")
self.assertEqual(n4.find(), "P")
self.assertEqual(n5.find(), "P")
self.assertEqual(q12.min_prio(), 5)
self.assertEqual(q12.min_elem(), "a")
self.assertEqual(q345.min_prio(), 2)
self.assertEqual(q345.min_elem(), "c")
q12.split()
self._check_tree(q1)
self._check_tree(q2)
q345.split()
self._check_tree(q3)
self._check_tree(q4)
self._check_tree(q5)
self.assertEqual(n1.find(), "A")
self.assertEqual(n2.find(), "B")
self.assertEqual(n3.find(), "C")
self.assertEqual(n4.find(), "D")
self.assertEqual(n5.find(), "E")
self.assertEqual(q3.min_prio(), 2)
self.assertEqual(q3.min_elem(), "c")
q1.clear()
q2.clear()
q3.clear()
q4.clear()
q5.clear()
q12.clear()
q345.clear()
q12345.clear()
def test_medium(self):
"""Medium test, 14 elements."""
prios = [3, 8, 6, 2, 9, 4, 6, 8, 1, 5, 9, 4, 7, 8]
queues = []
nodes = []
for i in range(14):
q = ConcatenableQueue(chr(ord("A") + i))
n = q.insert(chr(ord("a") + i), prios[i])
queues.append(q)
nodes.append(n)
q = ConcatenableQueue("AB")
q.merge(queues[0:2])
queues.append(q)
self._check_tree(q)
self.assertEqual(q.min_prio(), min(prios[0:2]))
q = ConcatenableQueue("CDE")
q.merge(queues[2:5])
queues.append(q)
self._check_tree(q)
self.assertEqual(q.min_prio(), min(prios[2:5]))
q = ConcatenableQueue("FGHI")
q.merge(queues[5:9])
queues.append(q)
self._check_tree(q)
self.assertEqual(q.min_prio(), min(prios[5:9]))
q = ConcatenableQueue("JKLMN")
q.merge(queues[9:14])
queues.append(q)
self._check_tree(q)
self.assertEqual(q.min_prio(), min(prios[9:14]))
for i in range(0, 2):
self.assertEqual(nodes[i].find(), "AB")
for i in range(2, 5):
self.assertEqual(nodes[i].find(), "CDE")
for i in range(5, 9):
self.assertEqual(nodes[i].find(), "FGHI")
for i in range(9, 14):
self.assertEqual(nodes[i].find(), "JKLMN")
q = ConcatenableQueue("ALL")
q.merge(queues[14:18])
queues.append(q)
self._check_tree(q)
self.assertEqual(q.min_prio(), 1)
self.assertEqual(q.min_elem(), "i")
for i in range(14):
self.assertEqual(nodes[i].find(), "ALL")
prios[8] = 5
nodes[8].set_prio(prios[8])
self.assertEqual(q.min_prio(), 2)
self.assertEqual(q.min_elem(), "d")
q.split()
for i in range(0, 2):
self.assertEqual(nodes[i].find(), "AB")
for i in range(2, 5):
self.assertEqual(nodes[i].find(), "CDE")
for i in range(5, 9):
self.assertEqual(nodes[i].find(), "FGHI")
for i in range(9, 14):
self.assertEqual(nodes[i].find(), "JKLMN")
self.assertEqual(queues[14].min_prio(), min(prios[0:2]))
self.assertEqual(queues[15].min_prio(), min(prios[2:5]))
self.assertEqual(queues[16].min_prio(), min(prios[5:9]))
self.assertEqual(queues[17].min_prio(), min(prios[9:14]))
for q in queues[14:18]:
self._check_tree(q)
q.split()
for i in range(14):
self._check_tree(queues[i])
self.assertEqual(nodes[i].find(), chr(ord("A") + i))
self.assertEqual(queues[i].min_prio(), prios[i])
self.assertEqual(queues[i].min_elem(), chr(ord("a") + i))
for q in queues:
q.clear()
def test_random(self):
"""Pseudo-random test."""
rng = random.Random(23456)
nodes = []
prios = []
queues = {}
queue_nodes = {}
queue_subs = {}
live_queues = set()
live_merged_queues = set()
for i in range(4000):
name = f"q{i}"
q = ConcatenableQueue(name)
p = rng.random()
n = q.insert(f"n{i}", p)
nodes.append(n)
prios.append(p)
queues[name] = q
queue_nodes[name] = {i}
live_queues.add(name)
for i in range(2000):
for k in range(10):
t = rng.randint(0, len(nodes) - 1)
name = nodes[t].find()
self.assertIn(name, live_queues)
self.assertIn(t, queue_nodes[name])
p = rng.random()
prios[t] = p
nodes[t].set_prio(p)
pp = min(prios[tt] for tt in queue_nodes[name])
tt = prios.index(pp)
self.assertEqual(queues[name].min_prio(), pp)
self.assertEqual(queues[name].min_elem(), f"n{tt}")
k = rng.randint(2, max(2, len(live_queues) // 2 - 400))
subs = rng.sample(sorted(live_queues), k)
name = f"Q{i}"
q = ConcatenableQueue(name)
q.merge([queues[nn] for nn in subs])
self._check_tree(q)
queues[name] = q
queue_nodes[name] = set().union(*(queue_nodes[nn] for nn in subs))
queue_subs[name] = set(subs)
live_queues.difference_update(subs)
live_merged_queues.difference_update(subs)
live_queues.add(name)
live_merged_queues.add(name)
pp = min(prios[tt] for tt in queue_nodes[name])
tt = prios.index(pp)
self.assertEqual(q.min_prio(), pp)
self.assertEqual(q.min_elem(), f"n{tt}")
if len(live_merged_queues) >= 100:
name = rng.choice(sorted(live_merged_queues))
queues[name].split()
for nn in queue_subs[name]:
self._check_tree(queues[nn])
pp = min(prios[tt] for tt in queue_nodes[nn])
tt = prios.index(pp)
self.assertEqual(queues[nn].min_prio(), pp)
self.assertEqual(queues[nn].min_elem(), f"n{tt}")
live_queues.add(nn)
if nn in queue_subs:
live_merged_queues.add(nn)
live_merged_queues.remove(name)
live_queues.remove(name)
del queues[name]
del queue_nodes[name]
del queue_subs[name]
for q in queues.values():
q.clear()
class TestPriorityQueue(unittest.TestCase):
"""Test PriorityQueue."""
def test_empty(self):
"""Empty queue."""
q = PriorityQueue()
self.assertTrue(q.empty())
with self.assertRaises(IndexError):
q.find_min()
def test_single(self):
"""Single element."""
q = PriorityQueue()
n1 = q.insert(5, "a")
self.assertEqual(n1.prio, 5)
self.assertEqual(n1.data, "a")
self.assertFalse(q.empty())
self.assertIs(q.find_min(), n1)
q.decrease_prio(n1, 3)
self.assertEqual(n1.prio, 3)
self.assertIs(q.find_min(), n1)
q.delete(n1)
self.assertTrue(q.empty())
def test_simple(self):
"""A few elements."""
prios = [9, 4, 7, 5, 8, 6, 4, 5, 2, 6]
labels = "abcdefghij"
q = PriorityQueue()
elems = [q.insert(prio, data) for (prio, data) in zip(prios, labels)]
for (n, prio, data) in zip(elems, prios, labels):
self.assertEqual(n.prio, prio)
self.assertEqual(n.data, data)
self.assertIs(q.find_min(), elems[8])
q.decrease_prio(elems[2], 1)
self.assertIs(q.find_min(), elems[2])
q.decrease_prio(elems[4], 3)
self.assertIs(q.find_min(), elems[2])
q.delete(elems[2])
self.assertIs(q.find_min(), elems[8])
q.delete(elems[8])
self.assertIs(q.find_min(), elems[4])
q.delete(elems[4])
q.delete(elems[1])
self.assertIs(q.find_min(), elems[6])
q.delete(elems[3])
q.delete(elems[9])
self.assertIs(q.find_min(), elems[6])
q.delete(elems[6])
self.assertIs(q.find_min(), elems[7])
q.delete(elems[7])
self.assertIs(q.find_min(), elems[5])
self.assertFalse(q.empty())
q.clear()
self.assertTrue(q.empty())
def test_increase_prio(self):
"""Increase priority of existing element."""
q = PriorityQueue()
n1 = q.insert(5, "a")
q.increase_prio(n1, 8)
self.assertEqual(n1.prio, 8)
self.assertIs(q.find_min(), n1)
q = PriorityQueue()
n1 = q.insert(9, "a")
n2 = q.insert(4, "b")
n3 = q.insert(7, "c")
n4 = q.insert(5, "d")
self.assertIs(q.find_min(), n2)
q.increase_prio(n2, 8)
self.assertEqual(n2.prio, 8)
self.assertIs(q.find_min(), n4)
q.increase_prio(n3, 10)
self.assertEqual(n3.prio, 10)
self.assertIs(q.find_min(), n4)
q.delete(n4)
self.assertIs(q.find_min(), n2)
q.delete(n2)
self.assertIs(q.find_min(), n1)
q.delete(n1)
self.assertIs(q.find_min(), n3)
self.assertEqual(n3.prio, 10)
q.delete(n3)
self.assertTrue(q.empty())
def test_random(self):
"""Pseudo-random test."""
rng = random.Random(34567)
num_elem = 1000
seq = 0
elems = []
q = PriorityQueue()
def check():
min_prio = min(prio for (n, prio, data) in elems)
m = q.find_min()
self.assertIn((m, m.prio, m.data), elems)
self.assertEqual(m.prio, min_prio)
for i in range(num_elem):
seq += 1
prio = rng.randint(0, 1000000)
elems.append((q.insert(prio, seq), prio, seq))
check()
for i in range(10000):
p = rng.randint(0, num_elem - 1)
prio = rng.randint(0, 1000000)
if prio <= elems[p][1]:
q.decrease_prio(elems[p][0], prio)
else:
q.increase_prio(elems[p][0], prio)
elems[p] = (elems[p][0], prio, elems[p][2])
check()
p = rng.randint(0, num_elem - 1)
q.delete(elems[p][0])
elems.pop(p)
check()
seq += 1
prio = rng.randint(0, 1000000)
elems.append((q.insert(prio, seq), prio, seq))
check()
for i in range(num_elem):
p = rng.randint(0, num_elem - 1 - i)
q.delete(elems[p][0])
elems.pop(p)
if elems:
check()
self.assertTrue(q.empty())
if __name__ == "__main__":
unittest.main()

View File

@ -1,22 +0,0 @@
#!/bin/sh
set -e
echo
echo "Running mypy"
mypy --disallow-incomplete-defs python tests
echo
echo "Running pylint"
pylint --ignore=test_mwmatching.py python tests
echo
echo "Running test_mwmatching.py"
python3 python/test_mwmatching.py
echo
echo "Checking test coverage"
coverage erase
coverage run --branch python/test_mwmatching.py
coverage report -m

View File

@ -1,57 +0,0 @@
#!/bin/sh
set -e
echo
echo "Running Python unit tests"
echo
python3 --version
echo
python3 python/test_mwmatching.py
echo
echo "Checking test coverage"
echo
coverage erase
coverage run --branch python/test_mwmatching.py
coverage report -m
echo
echo "Running Python code on test graphs"
echo
python3 python/run_matching.py --verify \
tests/graphs/chain_n1000.edge \
tests/graphs/chain_n5000.edge \
tests/graphs/sparse_delta_n1004.edge \
tests/graphs/triangles_n1002.edge \
tests/graphs/triangles_n5001.edge \
tests/graphs/random_n1000_m10000.edge \
tests/graphs/random_n2000_m10000.edge
echo
echo "Running C++ unit tests"
echo
g++ --version
echo
make -C cpp run_matching test_mwmatching
cpp/test_mwmatching
echo
echo "Running C++ code on test graphs"
echo
python3 tests/run_test.py --solver cpp/run_matching --verify \
tests/graphs/chain_n1000.edge \
tests/graphs/chain_n5000.edge \
tests/graphs/sparse_delta_n1004.edge \
tests/graphs/triangles_n1002.edge \
tests/graphs/triangles_n5001.edge \
tests/graphs/random_n1000_m10000.edge \
tests/graphs/random_n2000_m10000.edge

38
test_cpp.sh Executable file
View File

@ -0,0 +1,38 @@
#!/bin/sh
set -e
echo
echo ">> Running unit tests"
echo
g++ --version
echo
make -C cpp clean
make -C cpp run_matching test_mwmatching test_concatenable_queue test_priority_queue
cpp/test_mwmatching
cpp/test_concatenable_queue
cpp/test_priority_queue
echo
echo ">> Running test graphs"
echo
python3 tests/run_test.py --solver cpp/run_matching --verify \
tests/graphs/chain_n1000.edge \
tests/graphs/chain_n5000.edge \
tests/graphs/chain_n10000.edge \
tests/graphs/sparse_delta_n1004.edge \
tests/graphs/sparse_delta_n2004.edge \
tests/graphs/sparse_delta_n5004.edge \
tests/graphs/triangles_n1002.edge \
tests/graphs/triangles_n5001.edge \
tests/graphs/triangles_n10002.edge \
tests/graphs/random_n1000_m10000.edge \
tests/graphs/random_n2000_m10000.edge \
tests/graphs/random_n4000_m10000.edge
echo
echo ">> Done"

47
test_python.sh Executable file
View File

@ -0,0 +1,47 @@
#!/bin/bash
set -e
python3 --version
echo
echo ">> Running pycodestyle"
pycodestyle python/mwmatching python/run_matching.py tests
echo
echo ">> Running mypy"
mypy --disallow-incomplete-defs python tests
echo
echo ">> Running pylint"
pylint --ignore=test_algorithm.py python tests/*.py tests/generate/*.py || [ $(($? & 3)) -eq 0 ]
echo
echo ">> Running unit tests"
python3 -m unittest discover -t python -s python/tests
echo
echo ">> Checking test coverage"
coverage erase
coverage run --branch -m unittest discover -t python -s python/tests
coverage report -m
echo
echo ">> Running test graphs"
python3 python/run_matching.py --verify \
tests/graphs/chain_n1000.edge \
tests/graphs/chain_n5000.edge \
tests/graphs/chain_n10000.edge \
tests/graphs/sparse_delta_n1004.edge \
tests/graphs/sparse_delta_n2004.edge \
tests/graphs/sparse_delta_n5004.edge \
tests/graphs/triangles_n1002.edge \
tests/graphs/triangles_n5001.edge \
tests/graphs/triangles_n10002.edge \
tests/graphs/random_n1000_m10000.edge \
tests/graphs/random_n2000_m10000.edge \
tests/graphs/random_n4000_m10000.edge
echo
echo ">> Done"

View File

@ -7,7 +7,7 @@ described by Gabow.
Reference: H. N. Gabow, "An efficient implementation of Edmonds'
algorithm for maximum matching on graphs", JACM 23
(1976), pp. 221-234.
Based on Fortran program "hardcard.f" by R. Bruce Mattingly, 1991.
Rewritten in Python by Joris van Rantwijk, 2023.

View File

@ -14,7 +14,7 @@ from typing import TextIO
def write_dimacs_graph(
f: TextIO,
edges: list[tuple[int, int, int|float]]
edges: list[tuple[int, int, float]]
) -> None:
"""Write a graph in DIMACS edge list format."""
@ -38,7 +38,7 @@ def make_random_graph(
max_weight: float,
float_weights: bool,
rng: random.Random
) -> list[tuple[int, int, int|float]]:
) -> list[tuple[int, int, float]]:
"""Generate a random graph with random edge weights."""
edge_set: set[tuple[int, int]] = set()
@ -59,9 +59,9 @@ def make_random_graph(
rng.shuffle(edge_candidates)
edge_set.update(edge_candidates[:m])
edges: list[tuple[int, int, int|float]] = []
edges: list[tuple[int, int, float]] = []
for (x, y) in sorted(edge_set):
w: int|float
w: float
if float_weights:
w = rng.uniform(1.0e-8, max_weight)
else:

View File

@ -19,26 +19,25 @@ count_delta_step = [0]
def patch_matching_code() -> None:
"""Patch the matching code to count events."""
# pylint: disable=import-outside-toplevel,protected-access
# pylint: disable=import-outside-toplevel
import mwmatching
from mwmatching.algorithm import MatchingContext
orig_make_blossom = mwmatching._MatchingContext.make_blossom
orig_substage_calc_dual_delta = (
mwmatching._MatchingContext.substage_calc_dual_delta)
orig_make_blossom = MatchingContext.make_blossom
orig_calc_dual_delta_step = MatchingContext.calc_dual_delta_step
def stub_make_blossom(*args: Any, **kwargs: Any) -> Any:
count_make_blossom[0] += 1
return orig_make_blossom(*args, **kwargs)
def stub_substage_calc_dual_delta(*args: Any, **kwargs: Any) -> Any:
def stub_calc_dual_delta_step(*args: Any, **kwargs: Any) -> Any:
count_delta_step[0] += 1
ret = orig_substage_calc_dual_delta(*args, **kwargs)
ret = orig_calc_dual_delta_step(*args, **kwargs)
return ret
mwmatching._MatchingContext.make_blossom = stub_make_blossom # type: ignore
mwmatching._MatchingContext.substage_calc_dual_delta = ( # type: ignore
stub_substage_calc_dual_delta)
MatchingContext.make_blossom = stub_make_blossom # type: ignore
MatchingContext.calc_dual_delta_step = ( # type: ignore
stub_calc_dual_delta_step)
def run_max_weight_matching(

51
tests/run_benchmark.sh Executable file
View File

@ -0,0 +1,51 @@
#!/bin/bash
PYMWM=../python/run_matching.py
CPPMWM=../cpp/run_matching
LEMON=lemon/lemon_matching
# Generate big graphs that are not in the Git repo.
python3 generate/make_slow_graph.py chain 20000 > graphs/chain_n20000.edge
python3 generate/make_slow_graph.py chain 50000 > graphs/chain_n50000.edge
python3 generate/triangles.py 16667 1 > graphs/triangles_n50001.edge
# Run pre-generated graphs.
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --runs 5 --verify \
graphs/chain_n1000.edge \
graphs/chain_n5000.edge \
graphs/chain_n10000.edge \
graphs/sparse_delta_n1004.edge \
graphs/sparse_delta_n2004.edge \
graphs/sparse_delta_n5004.edge \
graphs/triangles_n1002.edge \
graphs/triangles_n5001.edge \
graphs/triangles_n10002.edge
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --runs 5 \
graphs/chain_n20000.edge \
graphs/chain_n50000.edge \
graphs/triangles_n50001.edge
# Run random graphs.
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 1000 --m 5000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 1000 --m 31622
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 1000 --m 499500
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 2000 --m 10000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 2000 --m 89442
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 2000 --m 1999000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 5000 --m 25000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 5000 --m 353553
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 10000 --m 50000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 10000 --m 1000000
./run_test.py --solver $PYMWM --solver $CPPMWM --solver $LEMON --timeout 600 --random --runs 25 --n 20000 --m 100000

View File

@ -29,7 +29,7 @@ class SolverError(Exception):
class Graph(NamedTuple):
"""Represents a graph. Vertex indices start from 0."""
edges: list[tuple[int, int, int|float]]
edges: list[tuple[int, int, float]]
def num_vertex(self) -> int:
"""Count number of vertices."""
@ -55,11 +55,11 @@ class RunStatus(enum.IntEnum):
class RunResult(NamedTuple):
"""Represent the result of running a solver on a graph."""
status: RunStatus = RunStatus.OK
weight: int|float = 0
weight: float = 0
run_time: Sequence[float] = ()
def parse_int_or_float(s: str) -> int|float:
def parse_int_or_float(s: str) -> float:
"""Convert a string to integer or float value."""
try:
return int(s)
@ -130,11 +130,11 @@ def write_dimacs_graph(f: TextIO, graph: Graph) -> None:
print(f"e {x+1} {y+1} {w:.12g}", file=f)
def read_dimacs_matching(f: TextIO) -> tuple[int|float, Matching]:
def read_dimacs_matching(f: TextIO) -> tuple[float, Matching]:
"""Read a matching solution in DIMACS format."""
have_weight = False
weight: int|float = 0
weight: float = 0
pairs: list[tuple[int, int]] = []
for line in f:
@ -208,9 +208,9 @@ def make_random_graph(
rng.shuffle(edge_candidates)
edge_set.update(edge_candidates[:m])
edges: list[tuple[int, int, int|float]] = []
edges: list[tuple[int, int, float]] = []
for (x, y) in sorted(edge_set):
w: int|float
w: float
if float_weights:
w = rng.uniform(1.0e-8, max_weight)
else:
@ -220,14 +220,14 @@ def make_random_graph(
return Graph(edges)
def check_matching(graph: Graph, matching: Matching) -> int|float:
def check_matching(graph: Graph, matching: Matching) -> float:
"""Verify that the matching is valid and calculate its weight."""
edge_map: dict[tuple[int, int], int|float] = {}
edge_map: dict[tuple[int, int], float] = {}
for (x, y, w) in graph.edges:
edge_map[(min(x, y), max(x, y))] = w
weight: int|float = 0
weight: float = 0
nodes_used: set[int] = set()
for pair in matching.pairs:
@ -247,7 +247,7 @@ def check_matching(graph: Graph, matching: Matching) -> int|float:
return weight
def compare_weight(weight1: int|float, weight2: int|float) -> int:
def compare_weight(weight1: float, weight2: float) -> int:
"""Compare weights of matchings.
Returns:
@ -406,7 +406,7 @@ class WmatchSolver(Solver):
num_edge = len(graph.edges)
all_integer = True
adjacent: list[list[tuple[int, int|float]]] = [
adjacent: list[list[tuple[int, float]]] = [
[] for i in range(num_vertex)]
for (x, y, w) in graph.edges:
@ -451,13 +451,13 @@ def test_solver_on_graph(
solver: Solver,
graph: Graph,
graph_desc: str,
gold_weight: Optional[int|float],
gold_weight: Optional[float],
num_run: int
) -> RunResult:
"""Test the specified solver with the specified graph."""
solver_run_time: list[float] = []
solver_weight: Optional[int|float] = None
solver_weight: Optional[float] = None
for i in range(num_run):
@ -507,7 +507,7 @@ def test_graph(
solvers: list[Solver],
graph: Graph,
graph_desc: str,
gold_weight: Optional[int|float],
gold_weight: Optional[float],
num_run: int
) -> list[RunResult]:
"""Test all solvers with the specified graph."""
@ -525,7 +525,7 @@ def test_graph(
if gold_weight is None:
best_weight: Optional[int|float] = None
best_weight: Optional[float] = None
for result in results:
if result.status == RunStatus.OK:
if (best_weight is None) or (result.weight > best_weight):
@ -668,7 +668,7 @@ def test_input(
file=sys.stderr)
return 1
gold_weight: Optional[int|float] = None
gold_weight: Optional[float] = None
if verify:
reffile = os.path.splitext(filename)[0] + ".out"
try:
@ -740,7 +740,8 @@ def main() -> int:
parser.add_argument("--timeout",
action="store",
type=float,
help="abort when solver runs longer than TIMEOUT seconds")
help="abort when solver runs longer than TIMEOUT"
" seconds")
parser.add_argument("--runs",
action="store",
type=int,

51
tox.ini Normal file
View File

@ -0,0 +1,51 @@
[tox]
skipsdist = true
env_list =
static
coverage
py37
py38
py39
py310
py311
py312
py313
pypy3
[testenv]
commands =
python --version
python -m unittest discover -t python -s python/tests
python python/run_matching.py --verify \
tests/graphs/chain_n1000.edge \
tests/graphs/chain_n5000.edge \
tests/graphs/chain_n10000.edge \
tests/graphs/sparse_delta_n1004.edge \
tests/graphs/sparse_delta_n2004.edge \
tests/graphs/sparse_delta_n5004.edge \
tests/graphs/triangles_n1002.edge \
tests/graphs/triangles_n5001.edge \
tests/graphs/triangles_n10002.edge \
tests/graphs/random_n1000_m10000.edge \
tests/graphs/random_n2000_m10000.edge \
tests/graphs/random_n4000_m10000.edge
[testenv:static]
deps =
mypy
pycodestyle
pylint
commands =
pycodestyle python/mwmatching python/run_matching.py tests
mypy --disallow-incomplete-defs python tests
pylint --ignore=test_algorithm.py python tests/*.py tests/generate/*.py
[testenv:coverage]
deps =
coverage
commands =
coverage erase
coverage run --branch -m unittest discover -t python -s python/tests
coverage report -m