Datastructures for O(n*m*log(n)) algorithm
This commit is contained in:
parent
77dac28056
commit
c8a3f7f684
|
@ -0,0 +1,811 @@
|
|||
"""
|
||||
Data structures for matching.
|
||||
|
||||
Experimental.
|
||||
"""
|
||||
|
||||
from typing import Generic, Optional, TypeVar
|
||||
|
||||
|
||||
_NameT = TypeVar("_NameT")
|
||||
_NameT2 = TypeVar("_NameT2")
|
||||
_ElemT = TypeVar("_ElemT")
|
||||
_ElemT2 = TypeVar("_ElemT2")
|
||||
|
||||
|
||||
class UnionFindQueue(Generic[_NameT, _ElemT]):
|
||||
"""Combination of disjoint set and priority queue.
|
||||
|
||||
A queue has a "name", which can be any Python object.
|
||||
|
||||
Each element has associated "data", which can be any Python object.
|
||||
Each element has a priority.
|
||||
|
||||
The following operations can be done efficiently:
|
||||
- Create a new queue containing one new element.
|
||||
- Find the name of the queue that contains a given element.
|
||||
- Change the priority of a given element.
|
||||
- Find the element with lowest priority in a given queue.
|
||||
- Merge two or more queues.
|
||||
- Undo a previous merge step.
|
||||
|
||||
The implementation is essentially an AVL tree, with minimum-priority
|
||||
tracking added to it.
|
||||
"""
|
||||
|
||||
class Node(Generic[_NameT2, _ElemT2]):
|
||||
"""Node in a UnionFindQueue."""
|
||||
|
||||
def __init__(self,
|
||||
owner: "UnionFindQueue[_NameT2, _ElemT2]",
|
||||
data: _ElemT2,
|
||||
prio: float
|
||||
) -> None:
|
||||
"""Initialize a new element.
|
||||
|
||||
This method should not be called directly.
|
||||
Instead, call UnionFindQueue.insert().
|
||||
"""
|
||||
self.owner: "Optional[UnionFindQueue[_NameT2, _ElemT2]]" = owner
|
||||
self.data = data
|
||||
self.prio = prio
|
||||
self.min_node = self
|
||||
self.height = 1
|
||||
self.parent: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||||
self.left: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||||
self.right: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||||
self.parent = None
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def find(self) -> _NameT2:
|
||||
"""Return the name of the queue that contains this element.
|
||||
|
||||
This function takes time O(log(n)).
|
||||
"""
|
||||
node = self
|
||||
while node.parent is not None:
|
||||
node = node.parent
|
||||
assert node.owner is not None
|
||||
return node.owner.name
|
||||
|
||||
def set_prio(self, prio: float) -> None:
|
||||
"""Change the priority of this element."""
|
||||
self.prio = prio
|
||||
node = self
|
||||
while True:
|
||||
min_node = node
|
||||
if node.left is not None:
|
||||
left_min_node = node.left.min_node
|
||||
if left_min_node.prio < min_node.prio:
|
||||
min_node = left_min_node
|
||||
if node.right is not None:
|
||||
right_min_node = node.right.min_node
|
||||
if right_min_node.prio < min_node.prio:
|
||||
min_node = right_min_node
|
||||
node.min_node = min_node
|
||||
if node.parent is None:
|
||||
break
|
||||
node = node.parent
|
||||
|
||||
def __init__(self, name: _NameT) -> None:
|
||||
"""Initialize an empty queue.
|
||||
|
||||
This function takes time O(1).
|
||||
|
||||
Parameters:
|
||||
name: Name to assign to the new queue.
|
||||
"""
|
||||
self.name = name
|
||||
self.tree: "Optional[UnionFindQueue.Node[_NameT, _ElemT]]" = None
|
||||
self.sub_queues: "list[UnionFindQueue[_NameT, _ElemT]]" = []
|
||||
self.split_nodes: "list[UnionFindQueue.Node[_NameT, _ElemT]]" = []
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Remove all elements from the queue.
|
||||
|
||||
This function takes time O(n).
|
||||
"""
|
||||
node = self.tree
|
||||
self.tree = None
|
||||
self.sub_queues = []
|
||||
self.split_nodes.clear()
|
||||
|
||||
# Wipe pointers to enable refcounted garbage collection.
|
||||
while node is not None:
|
||||
prev_node = node
|
||||
if node.left is not None:
|
||||
node = node.left
|
||||
prev_node.left = None
|
||||
elif node.right is not None:
|
||||
node = node.right
|
||||
prev_node.right = None
|
||||
else:
|
||||
node = node.parent
|
||||
prev_node.parent = None
|
||||
|
||||
def insert(self, elem: _ElemT, prio: float) -> Node[_NameT, _ElemT]:
|
||||
"""Insert an element into the empty queue.
|
||||
|
||||
This function can only be used if the queue is empty.
|
||||
Non-empty queues can grow only by merging.
|
||||
|
||||
This function takes time O(1).
|
||||
|
||||
Parameters:
|
||||
elem: Element to insert.
|
||||
prio: Initial priority of the new element.
|
||||
"""
|
||||
assert self.tree is None
|
||||
self.tree = UnionFindQueue.Node(self, elem, prio)
|
||||
return self.tree
|
||||
|
||||
def min_prio(self) -> float:
|
||||
"""Return the minimum priority of any element in the queue.
|
||||
|
||||
The queue must be non-empty.
|
||||
This function takes time O(1).
|
||||
"""
|
||||
node = self.tree
|
||||
assert node is not None
|
||||
return node.min_node.prio
|
||||
|
||||
def min_elem(self) -> _ElemT:
|
||||
"""Return the element with minimum priority.
|
||||
|
||||
The queue must be non-empty.
|
||||
This function takes time O(1).
|
||||
"""
|
||||
node = self.tree
|
||||
assert node is not None
|
||||
return node.min_node.data
|
||||
|
||||
def merge(self, sub_queues: "list[UnionFindQueue[_NameT, _ElemT]]") -> None:
|
||||
"""Merge the specified queues.
|
||||
|
||||
This queue must inititially be empty.
|
||||
All specified sub-queues must initially be non-empty.
|
||||
|
||||
This function removes all elements from the specified sub-queues
|
||||
and adds them to this queue.
|
||||
|
||||
After merging, this queue retains a reference to the list of sub-queues.
|
||||
|
||||
This function takes time O(len(sub_queues) * log(n)).
|
||||
"""
|
||||
assert self.tree is None
|
||||
assert not self.sub_queues
|
||||
assert not self.split_nodes
|
||||
assert sub_queues
|
||||
|
||||
# Keep the list of sub-queues.
|
||||
self.sub_queues = sub_queues
|
||||
|
||||
# Move the root node from the first sub-queue to this queue.
|
||||
# Clear its owner pointer.
|
||||
self.tree = sub_queues[0].tree
|
||||
assert self.tree is not None
|
||||
sub_queues[0].tree = None
|
||||
self.tree.owner = None
|
||||
|
||||
# Merge remaining sub-queues.
|
||||
for sub in sub_queues[1:]:
|
||||
|
||||
# Pull the root node from the sub-queue.
|
||||
# Clear its owner pointer.
|
||||
subtree = sub.tree
|
||||
assert subtree is not None
|
||||
assert subtree.owner is sub
|
||||
subtree.owner = None
|
||||
|
||||
# Merge our current tree with the tree from the sub-queue.
|
||||
(self.tree, split_node) = self._merge_tree(self.tree, subtree)
|
||||
|
||||
# Keep track of the left-most node from the sub-queue.
|
||||
self.split_nodes.append(split_node)
|
||||
|
||||
# Put the owner pointer in the root node.
|
||||
self.tree.owner = self
|
||||
|
||||
def split(self) -> None:
|
||||
"""Undo the merge step that filled this queue.
|
||||
|
||||
Remove all elements from this queue and put them back in
|
||||
the sub-queues from which they came.
|
||||
|
||||
After splitting, this queue will be empty.
|
||||
|
||||
This function takes time O(k * log(n)).
|
||||
"""
|
||||
assert self.tree is not None
|
||||
assert self.sub_queues
|
||||
|
||||
# Clear the owner pointer from the root node.
|
||||
assert self.tree.owner is self
|
||||
self.tree.owner = None
|
||||
|
||||
# Split the tree to reconstruct each sub-queue.
|
||||
for (sub, split_node) in zip(self.sub_queues[:0:-1],
|
||||
self.split_nodes[::-1]):
|
||||
|
||||
(tree, rtree) = self._split_tree(split_node)
|
||||
|
||||
# Assign the right tree to the sub-queue.
|
||||
sub.tree = rtree
|
||||
rtree.owner = sub
|
||||
|
||||
# Put the remaining tree in the first sub-queue.
|
||||
self.sub_queues[0].tree = tree
|
||||
tree.owner = self.sub_queues[0]
|
||||
|
||||
# Make this queue empty.
|
||||
self.tree = None
|
||||
self.sub_queues = []
|
||||
self.split_nodes.clear()
|
||||
|
||||
@staticmethod
|
||||
def _repair_node(node: Node[_NameT, _ElemT]) -> None:
|
||||
"""Recalculate the height and min-priority information of the
|
||||
specified node.
|
||||
"""
|
||||
|
||||
# Repair node height.
|
||||
lh = 0 if node.left is None else node.left.height
|
||||
rh = 0 if node.right is None else node.right.height
|
||||
node.height = 1 + max(lh, rh)
|
||||
|
||||
# Repair min-priority.
|
||||
min_node = node
|
||||
if node.left is not None:
|
||||
left_min_node = node.left.min_node
|
||||
if left_min_node.prio < min_node.prio:
|
||||
min_node = left_min_node
|
||||
if node.right is not None:
|
||||
right_min_node = node.right.min_node
|
||||
if right_min_node.prio < min_node.prio:
|
||||
min_node = right_min_node
|
||||
node.min_node = min_node
|
||||
|
||||
def _rotate_left(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||||
"""Rotate the specified subtree to the left.
|
||||
|
||||
Return the new root node of the subtree.
|
||||
"""
|
||||
#
|
||||
# N C
|
||||
# / \ / \
|
||||
# A C ---> N D
|
||||
# / \ / \
|
||||
# B D A B
|
||||
#
|
||||
parent = node.parent
|
||||
new_top = node.right
|
||||
assert new_top is not None
|
||||
|
||||
node.right = new_top.left
|
||||
if node.right is not None:
|
||||
node.right.parent = node
|
||||
|
||||
new_top.left = node
|
||||
new_top.parent = parent
|
||||
node.parent = new_top
|
||||
|
||||
if parent is not None:
|
||||
if parent.left is node:
|
||||
parent.left = new_top
|
||||
elif parent.right is node:
|
||||
parent.right = new_top
|
||||
|
||||
self._repair_node(node)
|
||||
self._repair_node(new_top)
|
||||
|
||||
return new_top
|
||||
|
||||
def _rotate_right(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||||
"""Rotate the specified node to the right.
|
||||
|
||||
Return the new root node of the subtree.
|
||||
"""
|
||||
#
|
||||
# N A
|
||||
# / \ / \
|
||||
# A D ---> B N
|
||||
# / \ / \
|
||||
# B C C D
|
||||
#
|
||||
parent = node.parent
|
||||
new_top = node.left
|
||||
assert new_top is not None
|
||||
|
||||
node.left = new_top.right
|
||||
if node.left is not None:
|
||||
node.left.parent = node
|
||||
|
||||
new_top.right = node
|
||||
new_top.parent = parent
|
||||
node.parent = new_top
|
||||
|
||||
if parent is not None:
|
||||
if parent.left is node:
|
||||
parent.left = new_top
|
||||
elif parent.right is node:
|
||||
parent.right = new_top
|
||||
|
||||
self._repair_node(node)
|
||||
self._repair_node(new_top)
|
||||
|
||||
return new_top
|
||||
|
||||
def _rebalance_up(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||||
"""Repair and rebalance the specified node and its ancestors.
|
||||
|
||||
Return the root node of the rebalanced tree.
|
||||
"""
|
||||
|
||||
# Walk up to the root of the tree.
|
||||
while True:
|
||||
|
||||
lh = 0 if node.left is None else node.left.height
|
||||
rh = 0 if node.right is None else node.right.height
|
||||
|
||||
if lh > rh + 1:
|
||||
# This node is left-heavy. Rotate right to rebalance.
|
||||
#
|
||||
# N L
|
||||
# / \ / \
|
||||
# L \ / N
|
||||
# / \ \ ---> / / \
|
||||
# A B \ A B \
|
||||
# \ \
|
||||
# R R
|
||||
#
|
||||
lchild = node.left
|
||||
assert lchild is not None
|
||||
if ((lchild.right is not None)
|
||||
and ((lchild.left is None)
|
||||
or (lchild.right.height > lchild.left.height))):
|
||||
# Double rotation.
|
||||
lchild = self._rotate_left(lchild)
|
||||
|
||||
node = self._rotate_right(node)
|
||||
|
||||
elif lh + 1 < rh:
|
||||
# This node is right-heavy. Rotate left to rebalance.
|
||||
#
|
||||
# N R
|
||||
# / \ / \
|
||||
# / R N \
|
||||
# / / \ ---> / \ \
|
||||
# / A B / A B
|
||||
# / /
|
||||
# L L
|
||||
#
|
||||
rchild = node.right
|
||||
assert rchild is not None
|
||||
if ((rchild.left is not None)
|
||||
and ((rchild.right is None)
|
||||
or (rchild.left.height > rchild.right.height))):
|
||||
# Double rotation.
|
||||
rchild = self._rotate_right(rchild)
|
||||
|
||||
node = self._rotate_left(node)
|
||||
|
||||
else:
|
||||
# No rotation. Must still repair node though.
|
||||
self._repair_node(node)
|
||||
|
||||
if node.parent is None:
|
||||
break
|
||||
|
||||
# Continue rebalancing at the parent.
|
||||
node = node.parent
|
||||
|
||||
# Return new root node.
|
||||
return node
|
||||
|
||||
def _join_right(self,
|
||||
ltree: Node[_NameT, _ElemT],
|
||||
node: Node[_NameT, _ElemT],
|
||||
rtree: Optional[Node[_NameT, _ElemT]]
|
||||
) -> Node[_NameT, _ElemT]:
|
||||
"""Join a left subtree, middle node and right subtree together.
|
||||
|
||||
The left subtree must be higher than the right subtree.
|
||||
|
||||
Return the root node of the joined tree.
|
||||
"""
|
||||
lh = ltree.height
|
||||
rh = 0 if rtree is None else rtree.height
|
||||
assert lh > rh + 1
|
||||
|
||||
# Descend down the right spine of "ltree".
|
||||
# Stop at a node with compatible height, then insert "node"
|
||||
# and attach "rtree".
|
||||
#
|
||||
# ltree
|
||||
# / \
|
||||
# X
|
||||
# / \
|
||||
# X <-- cur
|
||||
# / \
|
||||
# node
|
||||
# / \
|
||||
# X rtree
|
||||
#
|
||||
|
||||
# Descend to a point with compatible height.
|
||||
cur = ltree
|
||||
while (cur.right is not None) and (cur.right.height > rh + 1):
|
||||
cur = cur.right
|
||||
|
||||
# Insert "node" and "rtree".
|
||||
node.left = cur.right
|
||||
node.right = rtree
|
||||
if node.left is not None:
|
||||
node.left.parent = node
|
||||
if rtree is not None:
|
||||
rtree.parent = node
|
||||
cur.right = node
|
||||
node.parent = cur
|
||||
|
||||
# A double rotation may be necessary.
|
||||
if (cur.left is None) or (cur.left.height <= rh):
|
||||
node = self._rotate_right(node)
|
||||
cur = self._rotate_left(cur)
|
||||
else:
|
||||
self._repair_node(node)
|
||||
self._repair_node(cur)
|
||||
|
||||
# Ascend from "cur" to the root of the tree.
|
||||
# Repair and/or rotate as needed.
|
||||
while cur.parent is not None:
|
||||
cur = cur.parent
|
||||
assert cur.left is not None
|
||||
assert cur.right is not None
|
||||
|
||||
if cur.left.height + 1 < cur.right.height:
|
||||
cur = self._rotate_left(cur)
|
||||
else:
|
||||
self._repair_node(cur)
|
||||
|
||||
return cur
|
||||
|
||||
def _join_left(self,
|
||||
ltree: Optional[Node[_NameT, _ElemT]],
|
||||
node: Node[_NameT, _ElemT],
|
||||
rtree: Node[_NameT, _ElemT]
|
||||
) -> Node[_NameT, _ElemT]:
|
||||
"""Join a left subtree, middle node and right subtree together.
|
||||
|
||||
The right subtree must be higher than the left subtree.
|
||||
|
||||
Return the root node of the joined tree.
|
||||
"""
|
||||
lh = 0 if ltree is None else ltree.height
|
||||
rh = rtree.height
|
||||
assert lh + 1 < rh
|
||||
|
||||
# Descend down the left spine of "rtree".
|
||||
# Stop at a node with compatible height, then insert "node"
|
||||
# and attach "ltree".
|
||||
#
|
||||
# rtree
|
||||
# / \
|
||||
# X
|
||||
# / \
|
||||
# cur --> X
|
||||
# / \
|
||||
# node
|
||||
# / \
|
||||
# ltree X
|
||||
#
|
||||
|
||||
# Descend to a point with compatible height.
|
||||
cur = rtree
|
||||
while (cur.left is not None) and (cur.left.height > lh + 1):
|
||||
cur = cur.left
|
||||
|
||||
# Insert "node" and "ltree".
|
||||
node.left = ltree
|
||||
node.right = cur.left
|
||||
if ltree is not None:
|
||||
ltree.parent = node
|
||||
if node.right is not None:
|
||||
node.right.parent = node
|
||||
cur.left = node
|
||||
node.parent = cur
|
||||
|
||||
# A double rotation may be necessary.
|
||||
if (cur.right is None) or (cur.right.height <= lh):
|
||||
node = self._rotate_left(node)
|
||||
cur = self._rotate_right(cur)
|
||||
else:
|
||||
self._repair_node(node)
|
||||
self._repair_node(cur)
|
||||
|
||||
# Ascend from "cur" to the root of the tree.
|
||||
# Repair and/or rotate as needed.
|
||||
while cur.parent is not None:
|
||||
cur = cur.parent
|
||||
assert cur.left is not None
|
||||
assert cur.right is not None
|
||||
|
||||
if cur.left.height > cur.right.height + 1:
|
||||
cur = self._rotate_right(cur)
|
||||
else:
|
||||
self._repair_node(cur)
|
||||
|
||||
return cur
|
||||
|
||||
def _join(self,
|
||||
ltree: Optional[Node[_NameT, _ElemT]],
|
||||
node: Node[_NameT, _ElemT],
|
||||
rtree: Optional[Node[_NameT, _ElemT]]
|
||||
) -> Node[_NameT, _ElemT]:
|
||||
"""Join a left subtree, middle node and right subtree together.
|
||||
|
||||
The left or right subtree may initially be a child of the middle
|
||||
node; such links will be broken as needed.
|
||||
|
||||
The left and right subtrees must be consistent, AVL-balanced trees.
|
||||
Parent pointers of the subtrees are ignored.
|
||||
|
||||
The middle node is considered as a single node.
|
||||
Its parent and child pointers are ignored.
|
||||
|
||||
Return the root node of the joined tree.
|
||||
"""
|
||||
lh = 0 if ltree is None else ltree.height
|
||||
rh = 0 if rtree is None else rtree.height
|
||||
|
||||
if lh > rh + 1:
|
||||
assert ltree is not None
|
||||
ltree.parent = None
|
||||
return self._join_right(ltree, node, rtree)
|
||||
elif lh + 1 < rh:
|
||||
assert rtree is not None
|
||||
rtree.parent = None
|
||||
return self._join_left(ltree, node, rtree)
|
||||
else:
|
||||
# Subtree heights are compatible. Just join them.
|
||||
#
|
||||
# node
|
||||
# / \
|
||||
# ltree rtree
|
||||
# / \ / \
|
||||
#
|
||||
node.parent = None
|
||||
node.left = ltree
|
||||
if ltree is not None:
|
||||
ltree.parent = node
|
||||
node.right = rtree
|
||||
if rtree is not None:
|
||||
rtree.parent = node
|
||||
self._repair_node(node)
|
||||
return node
|
||||
|
||||
def _merge_tree(self,
|
||||
ltree: Node[_NameT, _ElemT],
|
||||
rtree: Node[_NameT, _ElemT]
|
||||
) -> tuple[Node[_NameT, _ElemT], Node[_NameT, _ElemT]]:
|
||||
"""Merge two trees.
|
||||
|
||||
Return a tuple (split_node, merged_tree).
|
||||
"""
|
||||
|
||||
# Find the left-most node of the right tree.
|
||||
split_node = rtree
|
||||
while split_node.left is not None:
|
||||
split_node = split_node.left
|
||||
|
||||
# Delete the split_node from its tree.
|
||||
parent = split_node.parent
|
||||
if split_node.right is not None:
|
||||
split_node.right.parent = parent
|
||||
if parent is None:
|
||||
rtree_new = split_node.right
|
||||
else:
|
||||
# Repair and rebalance the ancestors of split_node.
|
||||
parent.left = split_node.right
|
||||
rtree_new = self._rebalance_up(parent)
|
||||
|
||||
# Join the two trees via the split_node.
|
||||
merged_tree = self._join(ltree, split_node, rtree_new)
|
||||
|
||||
return (merged_tree, split_node)
|
||||
|
||||
def _split_tree(self,
|
||||
split_node: Node[_NameT, _ElemT]
|
||||
) -> tuple[Node[_NameT, _ElemT], Node[_NameT, _ElemT]]:
|
||||
"""Split a tree on a specified node.
|
||||
|
||||
Two new trees will be constructed.
|
||||
All nodes to the left of "split_node" will go to the left tree.
|
||||
All nodes to the right of "split_node", and "split_node" itself,
|
||||
will go to the right tree.
|
||||
|
||||
Return tuple (ltree, rtree),
|
||||
where ltree contains all nodes left of the split-node,
|
||||
rtree contains the split-nodes and all nodes to its right.
|
||||
"""
|
||||
|
||||
# Assign the descendants of "split_node" to the appropriate trees
|
||||
# and detach them from "split_node".
|
||||
ltree = split_node.left
|
||||
rtree = split_node.right
|
||||
|
||||
split_node.left = None
|
||||
split_node.right = None
|
||||
if ltree is not None:
|
||||
ltree.parent = None
|
||||
if rtree is not None:
|
||||
rtree.parent = None
|
||||
|
||||
# Detach "split_node" from its parent (if any).
|
||||
parent = split_node.parent
|
||||
split_node.parent = None
|
||||
|
||||
# Assign "split_node" to the right tree.
|
||||
rtree = self._join(None, split_node, rtree)
|
||||
|
||||
# Walk up to the root of the tree.
|
||||
# On the way up, detach each node from its parent and join it,
|
||||
# and its descendants, to the appropriate tree.
|
||||
node = split_node
|
||||
while parent is not None:
|
||||
|
||||
# Ascend to the parent node.
|
||||
child = node
|
||||
node = parent
|
||||
parent = node.parent
|
||||
|
||||
# Detach "node" from its parent.
|
||||
node.parent = None
|
||||
|
||||
if node.left is child:
|
||||
# "split_node" was located in the left subtree of "node".
|
||||
# This implies that "node" must be joined to the right tree.
|
||||
rtree = self._join(rtree, node, node.right)
|
||||
|
||||
else:
|
||||
# "split_node" was located in the right subtree of "node".
|
||||
# This implies that "node" must be joined to the right tree.
|
||||
assert node.right is child
|
||||
ltree = self._join(node.left, node, ltree)
|
||||
|
||||
assert ltree is not None
|
||||
return (ltree, rtree)
|
||||
|
||||
|
||||
class PriorityQueue(Generic[_ElemT]):
|
||||
"""Priority queue based on a binary heap."""
|
||||
|
||||
class Node(Generic[_ElemT2]):
|
||||
"""Node in the priority queue."""
|
||||
|
||||
__slots__ = ("index", "prio", "data")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
index: int,
|
||||
prio: float,
|
||||
data: _ElemT2
|
||||
) -> None:
|
||||
self.index = index
|
||||
self.prio = prio
|
||||
self.data = data
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize an empty queue."""
|
||||
self.heap: "list[PriorityQueue.Node[_ElemT]]" = []
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Remove all elements from the queue.
|
||||
|
||||
This function takes time O(n).
|
||||
"""
|
||||
self.heap.clear()
|
||||
|
||||
def empty(self) -> bool:
|
||||
"""Return True if the queue is empty."""
|
||||
return (not self.heap)
|
||||
|
||||
def find_min(self) -> Node[_ElemT]:
|
||||
"""Return the minimum-priority node.
|
||||
|
||||
This function takes time O(1).
|
||||
"""
|
||||
if not self.heap:
|
||||
raise IndexError("Queue is empty")
|
||||
return self.heap[0]
|
||||
|
||||
def _sift_up(self, index: int) -> None:
|
||||
"""Repair the heap along an ascending path to the root."""
|
||||
node = self.heap[index]
|
||||
prio = node.prio
|
||||
|
||||
pos = index
|
||||
while pos > 0:
|
||||
tpos = (pos - 1) // 2
|
||||
tnode = self.heap[tpos]
|
||||
if tnode.prio <= prio:
|
||||
break
|
||||
tnode.index = pos
|
||||
self.heap[pos] = tnode
|
||||
pos = tpos
|
||||
|
||||
if pos != index:
|
||||
node.index = pos
|
||||
self.heap[pos] = node
|
||||
|
||||
def _sift_down(self, index: int) -> None:
|
||||
"""Repair the heap along a descending path."""
|
||||
num_elem = len(self.heap)
|
||||
node = self.heap[index]
|
||||
prio = node.prio
|
||||
|
||||
pos = index
|
||||
while True:
|
||||
tpos = 2 * pos + 1
|
||||
if tpos >= num_elem:
|
||||
break
|
||||
tnode = self.heap[tpos]
|
||||
|
||||
qpos = tpos + 1
|
||||
if qpos < num_elem:
|
||||
qnode = self.heap[qpos]
|
||||
if qnode.prio <= tnode.prio:
|
||||
tpos = qpos
|
||||
tnode = qnode
|
||||
|
||||
if tnode.prio >= prio:
|
||||
break
|
||||
|
||||
tnode.index = pos
|
||||
self.heap[pos] = tnode
|
||||
pos = tpos
|
||||
|
||||
if pos != index:
|
||||
node.index = pos
|
||||
self.heap[pos] = node
|
||||
|
||||
def insert(self, prio: float, data: _ElemT) -> Node:
|
||||
"""Insert a new element into the queue.
|
||||
|
||||
This function takes time O(log(n)).
|
||||
|
||||
Returns:
|
||||
Node that represents the new element.
|
||||
"""
|
||||
new_index = len(self.heap)
|
||||
node = self.Node(new_index, prio, data)
|
||||
self.heap.append(node)
|
||||
self._sift_up(new_index)
|
||||
return node
|
||||
|
||||
def delete(self, elem: Node[_ElemT]) -> None:
|
||||
"""Delete the specified element from the queue.
|
||||
|
||||
This function takes time O(log(n)).
|
||||
"""
|
||||
index = elem.index
|
||||
assert self.heap[index] is elem
|
||||
|
||||
node = self.heap.pop()
|
||||
if index < len(self.heap):
|
||||
node.index = index
|
||||
self.heap[index] = node
|
||||
if node.prio < elem.prio:
|
||||
self._sift_up(index)
|
||||
elif node.prio > elem.prio:
|
||||
self._sift_down(index)
|
||||
|
||||
def decrease_prio(self, elem: Node[_ElemT], prio: float) -> None:
|
||||
"""Decrease the priority of an existing element in the queue.
|
||||
|
||||
This function takes time O(log(n)).
|
||||
"""
|
||||
assert self.heap[elem.index] is elem
|
||||
assert prio <= elem.prio
|
||||
elem.prio = prio
|
||||
self._sift_up(elem.index)
|
|
@ -0,0 +1,491 @@
|
|||
"""Unit tests for data structures."""
|
||||
|
||||
import random
|
||||
import unittest
|
||||
|
||||
from datastruct import UnionFindQueue, PriorityQueue
|
||||
|
||||
|
||||
class TestUnionFindQueue(unittest.TestCase):
|
||||
"""Test UnionFindQueue."""
|
||||
|
||||
def _check_tree(self, queue):
|
||||
"""Check tree balancing rules and priority info."""
|
||||
|
||||
self.assertIsNone(queue.tree.parent)
|
||||
self.assertIs(queue.tree.owner, queue)
|
||||
|
||||
nodes = [queue.tree]
|
||||
while nodes:
|
||||
|
||||
node = nodes.pop()
|
||||
|
||||
if node.left is not None:
|
||||
self.assertIs(node.left.parent, node)
|
||||
nodes.append(node.left)
|
||||
|
||||
if node.right is not None:
|
||||
self.assertIs(node.right.parent, node)
|
||||
nodes.append(node.right)
|
||||
|
||||
if node is not queue.tree:
|
||||
self.assertIsNone(node.owner)
|
||||
|
||||
lh = 0 if node.left is None else node.left.height
|
||||
rh = 0 if node.right is None else node.right.height
|
||||
self.assertEqual(node.height, 1 + max(lh, rh))
|
||||
|
||||
self.assertLessEqual(lh, rh + 1)
|
||||
self.assertLessEqual(rh, lh + 1)
|
||||
|
||||
best_node = {node}
|
||||
best_prio = node.prio
|
||||
for child in (node.left, node.right):
|
||||
if child is not None:
|
||||
if child.min_node.prio < best_prio:
|
||||
best_prio = child.min_node.prio
|
||||
best_node = {child.min_node}
|
||||
elif child.min_node.prio == best_prio:
|
||||
best_node.add(child.min_node)
|
||||
|
||||
self.assertEqual(node.min_node.prio, best_prio)
|
||||
self.assertIn(node.min_node, best_node)
|
||||
|
||||
def test_single(self):
|
||||
"""Single element."""
|
||||
q = UnionFindQueue("Q")
|
||||
|
||||
with self.assertRaises(Exception):
|
||||
q.min_prio()
|
||||
|
||||
with self.assertRaises(Exception):
|
||||
q.min_elem()
|
||||
|
||||
n = q.insert("a", 4)
|
||||
self.assertIsInstance(n, UnionFindQueue.Node)
|
||||
|
||||
self._check_tree(q)
|
||||
|
||||
self.assertEqual(n.find(), "Q")
|
||||
self.assertEqual(q.min_prio(), 4)
|
||||
self.assertEqual(q.min_elem(), "a")
|
||||
|
||||
with self.assertRaises(Exception):
|
||||
q.insert("x", 1)
|
||||
|
||||
n.set_prio(8)
|
||||
self._check_tree(q)
|
||||
|
||||
self.assertEqual(n.find(), "Q")
|
||||
self.assertEqual(q.min_prio(), 8)
|
||||
self.assertEqual(q.min_elem(), "a")
|
||||
|
||||
q.clear()
|
||||
|
||||
def test_simple(self):
|
||||
"""Simple test, 5 elements."""
|
||||
q1 = UnionFindQueue("A")
|
||||
n1 = q1.insert("a", 5)
|
||||
|
||||
q2 = UnionFindQueue("B")
|
||||
n2 = q2.insert("b", 6)
|
||||
|
||||
q3 = UnionFindQueue("C")
|
||||
n3 = q3.insert("c", 7)
|
||||
|
||||
q4 = UnionFindQueue("D")
|
||||
n4 = q4.insert("d", 4)
|
||||
|
||||
q5 = UnionFindQueue("E")
|
||||
n5 = q5.insert("e", 3)
|
||||
|
||||
q345 = UnionFindQueue("P")
|
||||
q345.merge([q3, q4, q5])
|
||||
self._check_tree(q345)
|
||||
|
||||
self.assertEqual(n1.find(), "A")
|
||||
self.assertEqual(n3.find(), "P")
|
||||
self.assertEqual(n4.find(), "P")
|
||||
self.assertEqual(n5.find(), "P")
|
||||
self.assertEqual(q345.min_prio(), 3)
|
||||
self.assertEqual(q345.min_elem(), "e")
|
||||
|
||||
with self.assertRaises(Exception):
|
||||
q3.min_prio()
|
||||
|
||||
self._check_tree(q345)
|
||||
n5.set_prio(6)
|
||||
self._check_tree(q345)
|
||||
|
||||
self.assertEqual(q345.min_prio(), 4)
|
||||
self.assertEqual(q345.min_elem(), "d")
|
||||
|
||||
q12 = UnionFindQueue("Q")
|
||||
q12.merge([q1, q2])
|
||||
self._check_tree(q12)
|
||||
|
||||
self.assertEqual(n1.find(), "Q")
|
||||
self.assertEqual(n2.find(), "Q")
|
||||
self.assertEqual(q12.min_prio(), 5)
|
||||
self.assertEqual(q12.min_elem(), "a")
|
||||
|
||||
q12345 = UnionFindQueue("R")
|
||||
q12345.merge([q12, q345])
|
||||
self._check_tree(q12345)
|
||||
|
||||
self.assertEqual(n1.find(), "R")
|
||||
self.assertEqual(n2.find(), "R")
|
||||
self.assertEqual(n3.find(), "R")
|
||||
self.assertEqual(n4.find(), "R")
|
||||
self.assertEqual(n5.find(), "R")
|
||||
self.assertEqual(q12345.min_prio(), 4)
|
||||
self.assertEqual(q12345.min_elem(), "d")
|
||||
|
||||
n4.set_prio(8)
|
||||
self._check_tree(q12345)
|
||||
|
||||
self.assertEqual(q12345.min_prio(), 5)
|
||||
self.assertEqual(q12345.min_elem(), "a")
|
||||
|
||||
n3.set_prio(2)
|
||||
self._check_tree(q12345)
|
||||
|
||||
self.assertEqual(q12345.min_prio(), 2)
|
||||
self.assertEqual(q12345.min_elem(), "c")
|
||||
|
||||
q12345.split()
|
||||
self._check_tree(q12)
|
||||
self._check_tree(q345)
|
||||
|
||||
self.assertEqual(n1.find(), "Q")
|
||||
self.assertEqual(n2.find(), "Q")
|
||||
self.assertEqual(n3.find(), "P")
|
||||
self.assertEqual(n4.find(), "P")
|
||||
self.assertEqual(n5.find(), "P")
|
||||
self.assertEqual(q12.min_prio(), 5)
|
||||
self.assertEqual(q12.min_elem(), "a")
|
||||
self.assertEqual(q345.min_prio(), 2)
|
||||
self.assertEqual(q345.min_elem(), "c")
|
||||
|
||||
q12.split()
|
||||
self._check_tree(q1)
|
||||
self._check_tree(q2)
|
||||
|
||||
q345.split()
|
||||
self._check_tree(q3)
|
||||
self._check_tree(q4)
|
||||
self._check_tree(q5)
|
||||
|
||||
self.assertEqual(n1.find(), "A")
|
||||
self.assertEqual(n2.find(), "B")
|
||||
self.assertEqual(n3.find(), "C")
|
||||
self.assertEqual(n4.find(), "D")
|
||||
self.assertEqual(n5.find(), "E")
|
||||
self.assertEqual(q3.min_prio(), 2)
|
||||
self.assertEqual(q3.min_elem(), "c")
|
||||
|
||||
q1.clear()
|
||||
q2.clear()
|
||||
q3.clear()
|
||||
q4.clear()
|
||||
q5.clear()
|
||||
q12.clear()
|
||||
q345.clear()
|
||||
q12345.clear()
|
||||
|
||||
def test_medium(self):
|
||||
"""Medium test, 14 elements."""
|
||||
|
||||
prios = [3, 8, 6, 2, 9, 4, 6, 8, 1, 5, 9, 4, 7, 8]
|
||||
|
||||
queues = []
|
||||
nodes = []
|
||||
for i in range(14):
|
||||
q = UnionFindQueue(chr(ord("A") + i))
|
||||
n = q.insert(chr(ord("a") + i), prios[i])
|
||||
queues.append(q)
|
||||
nodes.append(n)
|
||||
|
||||
q = UnionFindQueue("AB")
|
||||
q.merge(queues[0:2])
|
||||
queues.append(q)
|
||||
self._check_tree(q)
|
||||
self.assertEqual(q.min_prio(), min(prios[0:2]))
|
||||
|
||||
q = UnionFindQueue("CDE")
|
||||
q.merge(queues[2:5])
|
||||
queues.append(q)
|
||||
self._check_tree(q)
|
||||
self.assertEqual(q.min_prio(), min(prios[2:5]))
|
||||
|
||||
q = UnionFindQueue("FGHI")
|
||||
q.merge(queues[5:9])
|
||||
queues.append(q)
|
||||
self._check_tree(q)
|
||||
self.assertEqual(q.min_prio(), min(prios[5:9]))
|
||||
|
||||
q = UnionFindQueue("JKLMN")
|
||||
q.merge(queues[9:14])
|
||||
queues.append(q)
|
||||
self._check_tree(q)
|
||||
self.assertEqual(q.min_prio(), min(prios[9:14]))
|
||||
|
||||
for i in range(0, 2):
|
||||
self.assertEqual(nodes[i].find(), "AB")
|
||||
for i in range(2, 5):
|
||||
self.assertEqual(nodes[i].find(), "CDE")
|
||||
for i in range(5, 9):
|
||||
self.assertEqual(nodes[i].find(), "FGHI")
|
||||
for i in range(9, 14):
|
||||
self.assertEqual(nodes[i].find(), "JKLMN")
|
||||
|
||||
q = UnionFindQueue("ALL")
|
||||
q.merge(queues[14:18])
|
||||
queues.append(q)
|
||||
self._check_tree(q)
|
||||
self.assertEqual(q.min_prio(), 1)
|
||||
self.assertEqual(q.min_elem(), "i")
|
||||
|
||||
for i in range(14):
|
||||
self.assertEqual(nodes[i].find(), "ALL")
|
||||
|
||||
prios[8] = 5
|
||||
nodes[8].set_prio(prios[8])
|
||||
self.assertEqual(q.min_prio(), 2)
|
||||
self.assertEqual(q.min_elem(), "d")
|
||||
|
||||
q.split()
|
||||
|
||||
for i in range(0, 2):
|
||||
self.assertEqual(nodes[i].find(), "AB")
|
||||
for i in range(2, 5):
|
||||
self.assertEqual(nodes[i].find(), "CDE")
|
||||
for i in range(5, 9):
|
||||
self.assertEqual(nodes[i].find(), "FGHI")
|
||||
for i in range(9, 14):
|
||||
self.assertEqual(nodes[i].find(), "JKLMN")
|
||||
|
||||
self.assertEqual(queues[14].min_prio(), min(prios[0:2]))
|
||||
self.assertEqual(queues[15].min_prio(), min(prios[2:5]))
|
||||
self.assertEqual(queues[16].min_prio(), min(prios[5:9]))
|
||||
self.assertEqual(queues[17].min_prio(), min(prios[9:14]))
|
||||
|
||||
for q in queues[14:18]:
|
||||
self._check_tree(q)
|
||||
q.split()
|
||||
|
||||
for i in range(14):
|
||||
self._check_tree(queues[i])
|
||||
self.assertEqual(nodes[i].find(), chr(ord("A") + i))
|
||||
self.assertEqual(queues[i].min_prio(), prios[i])
|
||||
self.assertEqual(queues[i].min_elem(), chr(ord("a") + i))
|
||||
|
||||
for q in queues:
|
||||
q.clear()
|
||||
|
||||
def test_random(self):
|
||||
"""Pseudo-random test."""
|
||||
|
||||
rng = random.Random(23456)
|
||||
|
||||
nodes = []
|
||||
prios = []
|
||||
queues = {}
|
||||
queue_nodes = {}
|
||||
queue_subs = {}
|
||||
live_queues = set()
|
||||
live_merged_queues = set()
|
||||
|
||||
for i in range(4000):
|
||||
name = f"q{i}"
|
||||
q = UnionFindQueue(name)
|
||||
p = rng.random()
|
||||
n = q.insert(f"n{i}", p)
|
||||
nodes.append(n)
|
||||
prios.append(p)
|
||||
queues[name] = q
|
||||
queue_nodes[name] = {i}
|
||||
live_queues.add(name)
|
||||
|
||||
for i in range(2000):
|
||||
|
||||
for k in range(10):
|
||||
t = rng.randint(0, len(nodes) - 1)
|
||||
name = nodes[t].find()
|
||||
self.assertIn(name, live_queues)
|
||||
self.assertIn(t, queue_nodes[name])
|
||||
p = rng.random()
|
||||
prios[t] = p
|
||||
nodes[t].set_prio(p)
|
||||
pp = min(prios[tt] for tt in queue_nodes[name])
|
||||
tt = prios.index(pp)
|
||||
self.assertEqual(queues[name].min_prio(), pp)
|
||||
self.assertEqual(queues[name].min_elem(), f"n{tt}")
|
||||
|
||||
k = rng.randint(2, max(2, len(live_queues) // 2 - 400))
|
||||
subs = rng.sample(sorted(live_queues), k)
|
||||
|
||||
name = f"Q{i}"
|
||||
q = UnionFindQueue(name)
|
||||
q.merge([queues[nn] for nn in subs])
|
||||
self._check_tree(q)
|
||||
queues[name] = q
|
||||
queue_nodes[name] = set().union(*(queue_nodes[nn] for nn in subs))
|
||||
queue_subs[name] = set(subs)
|
||||
live_queues.difference_update(subs)
|
||||
live_merged_queues.difference_update(subs)
|
||||
live_queues.add(name)
|
||||
live_merged_queues.add(name)
|
||||
|
||||
pp = min(prios[tt] for tt in queue_nodes[name])
|
||||
tt = prios.index(pp)
|
||||
self.assertEqual(q.min_prio(), pp)
|
||||
self.assertEqual(q.min_elem(), f"n{tt}")
|
||||
|
||||
if len(live_merged_queues) >= 100:
|
||||
name = rng.choice(sorted(live_merged_queues))
|
||||
queues[name].split()
|
||||
|
||||
for nn in queue_subs[name]:
|
||||
self._check_tree(queues[nn])
|
||||
pp = min(prios[tt] for tt in queue_nodes[nn])
|
||||
tt = prios.index(pp)
|
||||
self.assertEqual(queues[nn].min_prio(), pp)
|
||||
self.assertEqual(queues[nn].min_elem(), f"n{tt}")
|
||||
live_queues.add(nn)
|
||||
if nn in queue_subs:
|
||||
live_merged_queues.add(nn)
|
||||
|
||||
live_merged_queues.remove(name)
|
||||
live_queues.remove(name)
|
||||
|
||||
del queues[name]
|
||||
del queue_nodes[name]
|
||||
del queue_subs[name]
|
||||
|
||||
for q in queues.values():
|
||||
q.clear()
|
||||
|
||||
|
||||
class TestPriorityQueue(unittest.TestCase):
|
||||
"""Test PriorityQueue."""
|
||||
|
||||
def test_empty(self):
|
||||
"""Empty queue."""
|
||||
q = PriorityQueue()
|
||||
self.assertTrue(q.empty())
|
||||
with self.assertRaises(IndexError):
|
||||
q.find_min()
|
||||
|
||||
def test_single(self):
|
||||
"""Single element."""
|
||||
q = PriorityQueue()
|
||||
|
||||
n1 = q.insert(5, "a")
|
||||
self.assertEqual(n1.prio, 5)
|
||||
self.assertEqual(n1.data, "a")
|
||||
self.assertFalse(q.empty())
|
||||
self.assertIs(q.find_min(), n1)
|
||||
|
||||
q.decrease_prio(n1, 3)
|
||||
self.assertEqual(n1.prio, 3)
|
||||
self.assertIs(q.find_min(), n1)
|
||||
|
||||
q.delete(n1)
|
||||
self.assertTrue(q.empty())
|
||||
|
||||
def test_simple(self):
|
||||
"""A few elements."""
|
||||
prios = [9, 4, 7, 5, 8, 6, 4, 5, 2, 6]
|
||||
labels = "abcdefghij"
|
||||
|
||||
q = PriorityQueue()
|
||||
|
||||
elems = [q.insert(prio, data) for (prio, data) in zip(prios, labels)]
|
||||
for (n, prio, data) in zip(elems, prios, labels):
|
||||
self.assertEqual(n.prio, prio)
|
||||
self.assertEqual(n.data, data)
|
||||
|
||||
self.assertIs(q.find_min(), elems[8])
|
||||
|
||||
q.decrease_prio(elems[2], 1)
|
||||
self.assertIs(q.find_min(), elems[2])
|
||||
|
||||
q.decrease_prio(elems[4], 3)
|
||||
self.assertIs(q.find_min(), elems[2])
|
||||
|
||||
q.delete(elems[2])
|
||||
self.assertIs(q.find_min(), elems[8])
|
||||
|
||||
q.delete(elems[8])
|
||||
self.assertIs(q.find_min(), elems[4])
|
||||
|
||||
q.delete(elems[4])
|
||||
q.delete(elems[1])
|
||||
self.assertIs(q.find_min(), elems[6])
|
||||
|
||||
q.delete(elems[3])
|
||||
q.delete(elems[9])
|
||||
self.assertIs(q.find_min(), elems[6])
|
||||
|
||||
q.delete(elems[6])
|
||||
self.assertIs(q.find_min(), elems[7])
|
||||
|
||||
q.delete(elems[7])
|
||||
self.assertIs(q.find_min(), elems[5])
|
||||
|
||||
self.assertFalse(q.empty())
|
||||
q.clear()
|
||||
self.assertTrue(q.empty())
|
||||
|
||||
def test_random(self):
|
||||
"""Pseudo-random test."""
|
||||
rng = random.Random(34567)
|
||||
|
||||
num_elem = 1000
|
||||
|
||||
seq = 0
|
||||
elems = []
|
||||
q = PriorityQueue()
|
||||
|
||||
def check():
|
||||
min_prio = min(prio for (n, prio, data) in elems)
|
||||
m = q.find_min()
|
||||
self.assertIn((m, m.prio, m.data), elems)
|
||||
self.assertEqual(m.prio, min_prio)
|
||||
|
||||
for i in range(num_elem):
|
||||
seq += 1
|
||||
prio = rng.randint(0, 1000000)
|
||||
elems.append((q.insert(prio, seq), prio, seq))
|
||||
check()
|
||||
|
||||
for i in range(10000):
|
||||
p = rng.randint(0, num_elem - 1)
|
||||
prio = rng.randint(0, elems[p][1])
|
||||
q.decrease_prio(elems[p][0], prio)
|
||||
elems[p] = (elems[p][0], prio, elems[p][2])
|
||||
check()
|
||||
|
||||
p = rng.randint(0, num_elem - 1)
|
||||
q.delete(elems[p][0])
|
||||
elems.pop(p)
|
||||
check()
|
||||
|
||||
seq += 1
|
||||
prio = rng.randint(0, 1000000)
|
||||
elems.append((q.insert(prio, seq), prio, seq))
|
||||
check()
|
||||
|
||||
for i in range(num_elem):
|
||||
p = rng.randint(0, num_elem - 1 - i)
|
||||
q.delete(elems[p][0])
|
||||
elems.pop(p)
|
||||
if elems:
|
||||
check()
|
||||
|
||||
self.assertTrue(q.empty())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue