1
0
Fork 0

Maintain concatenable queue for each blossom

This commit is contained in:
Joris van Rantwijk 2024-11-17 00:50:07 +01:00
parent 5b5c107a5c
commit 22251e64e8
1 changed files with 52 additions and 55 deletions

View File

@ -320,7 +320,8 @@ struct Blossom
// TODO -- tree_blossoms // TODO -- tree_blossoms
// TOOD -- vertex_queue /** Concatenable queue containing all vertices in the blossom. */
ConcatenableQueue<WeightType, Blossom*, EdgeId> vertex_queue;
// TODO -- delta2_node // TODO -- delta2_node
@ -337,13 +338,14 @@ protected:
base_vertex(base_vertex), base_vertex(base_vertex),
label(LABEL_NONE), label(LABEL_NONE),
is_nontrivial_blossom(is_nontrivial_blossom), is_nontrivial_blossom(is_nontrivial_blossom),
vertex_queue(this),
vertex_dual_offset(0) vertex_dual_offset(0)
{ } { }
public: public:
/** Initialize a trivial (single-vertex) blossom. */ /** Initialize a trivial (single-vertex) blossom. */
explicit Blossom(VertexId base_vertex) explicit Blossom(VertexId x = NO_VERTEX)
: Blossom(base_vertex, false) : Blossom(x, false)
{ } { }
/** /**
@ -584,18 +586,6 @@ public:
// NOTE - this MUST be a list, because we delete items from it while keeping pointers to other items // NOTE - this MUST be a list, because we delete items from it while keeping pointers to other items
std::list<NonTrivialBlossomT> nontrivial_blossom; std::list<NonTrivialBlossomT> nontrivial_blossom;
// TODO -- vertex_queue_node
// TODO -- remove
/**
* Every vertex is contained in exactly one top-level blossom
* (possibly the trivial blossom that contains just that vertex).
*
* "vertex_top_blossom[x]" is the top-level blossom that contains
* vertex "x".
*/
std::vector<BlossomT*> vertex_top_blossom;
/** /**
* Modified dual variable of each vertex. * Modified dual variable of each vertex.
* *
@ -627,6 +617,10 @@ public:
/** Running sum of applied delta steps. */ /** Running sum of applied delta steps. */
WeightType delta_sum; WeightType delta_sum;
/** For each vertex, a node in its top-level blossom. */
typedef ConcatenableQueue<WeightType, BlossomT*, EdgeId> VertexQueue;
std::vector<typename VertexQueue::Node> vertex_queue_node;
// TODO -- delta2_queue // TODO -- delta2_queue
/** /**
@ -673,21 +667,22 @@ public:
*/ */
explicit MatchingContext(const std::vector<EdgeT>& edges_in) explicit MatchingContext(const std::vector<EdgeT>& edges_in)
: graph(edges_in), : graph(edges_in),
trivial_blossom(graph.num_vertex),
vertex_queue_node(graph.num_vertex),
delta3_node(edges_in.size()) delta3_node(edges_in.size())
{ {
// Initially all vertices are unmatched. // Initially all vertices are unmatched.
vertex_mate.resize(graph.num_vertex, NO_VERTEX); vertex_mate.resize(graph.num_vertex, NO_VERTEX);
// Create a trivial blossom for each vertex. // Initialize a trivial blossom for each vertex.
trivial_blossom.reserve(graph.num_vertex);
for (VertexId x = 0; x < graph.num_vertex; ++x) { for (VertexId x = 0; x < graph.num_vertex; ++x) {
trivial_blossom.emplace_back(x); trivial_blossom[x].base_vertex = x;
} }
// Initially all vertices are trivial top-level blossoms. // Insert each vertex as the only element in its own blossom.
vertex_top_blossom.reserve(graph.num_vertex);
for (VertexId x = 0; x < graph.num_vertex; ++x) { for (VertexId x = 0; x < graph.num_vertex; ++x) {
vertex_top_blossom.push_back(&trivial_blossom[x]); trivial_blossom[x].vertex_queue.insert(
&vertex_queue_node[x], 0, x);
} }
// Vertex duals are initialized to half the maximum edge weight. // Vertex duals are initialized to half the maximum edge weight.
@ -721,8 +716,7 @@ public:
*/ */
BlossomT* top_level_blossom(VertexId x) const BlossomT* top_level_blossom(VertexId x) const
{ {
// TODO return vertex_queue_node[x].find();
return vertex_top_blossom[x];
} }
/* ********** Least slack edge tracking: ********** */ /* ********** Least slack edge tracking: ********** */
@ -818,7 +812,7 @@ public:
WeightType best_slack = 0; WeightType best_slack = 0;
for (VertexId x = 0; x < graph.num_vertex; ++x) { for (VertexId x = 0; x < graph.num_vertex; ++x) {
if (vertex_top_blossom[x]->label == LABEL_NONE) { if (top_level_blossom(x)->label == LABEL_NONE) {
const EdgeT* edge = vertex_best_edge[x]; const EdgeT* edge = vertex_best_edge[x];
if (edge != nullptr) { if (edge != nullptr) {
WeightType slack = edge_slack(*edge); WeightType slack = edge_slack(*edge);
@ -1095,13 +1089,12 @@ public:
* discovers an augmenting path. In this case it returns an alternating * discovers an augmenting path. In this case it returns an alternating
* path that starts and ends in an unmatched vertex. * path that starts and ends in an unmatched vertex.
* *
* This function takes time O(k) to discover a blossom, where "k" is the * This function takes time O(k * log(n)) to discover a blossom,
* number of sub-blossoms, or time O(n) to discover an augmenting path. * where "k" is the number of sub-blossoms,
* or time O(n * log(n)) to discover an augmenting path.
*/ */
AlternatingPath trace_alternating_paths(VertexId x, VertexId y) AlternatingPath trace_alternating_paths(VertexId x, VertexId y)
{ {
assert(vertex_top_blossom[x] != vertex_top_blossom[y]);
// Initialize a path containing only the edge (x, y). // Initialize a path containing only the edge (x, y).
AlternatingPath path; AlternatingPath path;
path.edges.emplace_back(x, y); path.edges.emplace_back(x, y);
@ -1120,7 +1113,7 @@ public:
if (x != NO_VERTEX) { if (x != NO_VERTEX) {
// Stop if we found a common ancestor. // Stop if we found a common ancestor.
BlossomT* bx = vertex_top_blossom[x]; BlossomT* bx = top_level_blossom(x);
if (vertex_marker[bx->base_vertex]) { if (vertex_marker[bx->base_vertex]) {
first_common = bx; first_common = bx;
break; break;
@ -1141,7 +1134,7 @@ public:
if (y != NO_VERTEX) { if (y != NO_VERTEX) {
// Stop if we found a common ancestor. // Stop if we found a common ancestor.
BlossomT* by = vertex_top_blossom[y]; BlossomT* by = top_level_blossom(y);
if (vertex_marker[by->base_vertex]) { if (vertex_marker[by->base_vertex]) {
first_common = by; first_common = by;
break; break;
@ -1168,11 +1161,11 @@ public:
// If we found a common ancestor, trim the paths so they end there. // If we found a common ancestor, trim the paths so they end there.
if (first_common) { if (first_common) {
assert(first_common->label == LABEL_S); assert(first_common->label == LABEL_S);
while (vertex_top_blossom[path.edges.front().first] while (top_level_blossom(path.edges.front().first)
!= first_common) { != first_common) {
path.edges.pop_front(); path.edges.pop_front();
} }
while (vertex_top_blossom[path.edges.back().second] while (top_level_blossom(path.edges.back().second)
!= first_common) { != first_common) {
path.edges.pop_back(); path.edges.pop_back();
} }
@ -1190,7 +1183,7 @@ public:
* Assign label S to the new blossom. * Assign label S to the new blossom.
* Relabel all T-sub-blossoms as S and add their vertices to the queue. * Relabel all T-sub-blossoms as S and add their vertices to the queue.
* *
* This function takes total time O(n**2) per stage. * This function takes total time O((n + m) * log(n)) per stage.
*/ */
void make_blossom(const AlternatingPath& path) void make_blossom(const AlternatingPath& path)
{ {
@ -1201,14 +1194,14 @@ public:
std::vector<BlossomT*> subblossoms; std::vector<BlossomT*> subblossoms;
subblossoms.reserve(path.edges.size()); subblossoms.reserve(path.edges.size());
for (VertexPair edge : path.edges) { for (VertexPair edge : path.edges) {
subblossoms.push_back(vertex_top_blossom[edge.first]); subblossoms.push_back(top_level_blossom(edge.first));
} }
// Check that the path is cyclic. // Check that the path is cyclic.
VertexId pos = 0; VertexId pos = 0;
for (VertexPair edge : path.edges) { for (VertexPair edge : path.edges) {
pos = (pos + 1) % subblossoms.size(); pos = (pos + 1) % subblossoms.size();
assert(vertex_top_blossom[edge.second] == subblossoms[pos]); assert(top_level_blossom(edge.second) == subblossoms[pos]);
} }
// Blossom must start and end with an S-blossom. // Blossom must start and end with an S-blossom.
@ -1238,10 +1231,13 @@ public:
sub->parent = blossom; sub->parent = blossom;
} }
// Mark vertices as belonging to the new blossom. // Merge concatenable queues.
for_vertices_in_blossom(blossom, [this,blossom](VertexId x) { // TODO -- avoid temporary array
vertex_top_blossom[x] = blossom; std::vector<VertexQueue*> subqueues;
}); for (BlossomT* sub : subblossoms) {
subqueues.push_back(&sub->vertex_queue);
}
blossom->vertex_queue.merge(subqueues.begin(), subqueues.end());
// Assign label S to the new blossom and link to the alternating tree. // Assign label S to the new blossom and link to the alternating tree.
blossom->label = LABEL_S; blossom->label = LABEL_S;
@ -1271,6 +1267,10 @@ public:
assert(blossom->parent == nullptr); assert(blossom->parent == nullptr);
assert(blossom->label == LABEL_NONE); assert(blossom->label == LABEL_NONE);
// Split concatenable queue, thus reconstructing the separate
// concatenable queues of the sub-blossoms.
blossom->vertex_queue.split();
// Prepare to push pending delta updates down to the sub-blossoms. // Prepare to push pending delta updates down to the sub-blossoms.
WeightType vertex_dual_offset = blossom->vertex_dual_offset; WeightType vertex_dual_offset = blossom->vertex_dual_offset;
blossom->vertex_dual_offset = 0; blossom->vertex_dual_offset = 0;
@ -1281,10 +1281,6 @@ public:
assert(sub_blossom->parent == blossom); assert(sub_blossom->parent == blossom);
assert(sub_blossom->label == LABEL_NONE); assert(sub_blossom->label == LABEL_NONE);
sub_blossom->parent = nullptr; sub_blossom->parent = nullptr;
for_vertices_in_blossom(sub_blossom,
[this,sub_blossom](VertexId x) {
vertex_top_blossom[x] = sub_blossom;
});
// Push pending delta updates to sub-blossom. // Push pending delta updates to sub-blossom.
assert(sub_blossom->vertex_dual_offset == 0); assert(sub_blossom->vertex_dual_offset == 0);
@ -1326,7 +1322,7 @@ public:
// Find the sub-blossom that was attached to the parent node // Find the sub-blossom that was attached to the parent node
// in the alternating tree. // in the alternating tree.
BlossomT* entry = vertex_top_blossom[blossom->tree_edge.second]; BlossomT* entry = top_level_blossom(blossom->tree_edge.second);
// Assign label T to that blossom and link to the alternating tree. // Assign label T to that blossom and link to the alternating tree.
assign_blossom_label_t(entry); assign_blossom_label_t(entry);
@ -1469,8 +1465,6 @@ public:
* from sub-blossom "entry" to the base vertex of the blossom. * from sub-blossom "entry" to the base vertex of the blossom.
* *
* Recursively handle sub-blossoms as needed. * Recursively handle sub-blossoms as needed.
*
* This function takes time O(n).
*/ */
void augment_blossom(NonTrivialBlossomT* blossom, BlossomT* entry) void augment_blossom(NonTrivialBlossomT* blossom, BlossomT* entry)
{ {
@ -1505,14 +1499,18 @@ public:
/** /**
* Augment the matching through the specified augmenting path. * Augment the matching through the specified augmenting path.
* *
* This function takes time O(n). * This function takes time O(n * log(n)).
*/ */
void augment_matching(const AlternatingPath& path) void augment_matching(const AlternatingPath& path)
{ {
// Check that the path starts and ends in an unmatched blossom. // Check that the path starts and ends in an unmatched blossom.
assert(path.edges.size() % 2 == 1); assert(path.edges.size() % 2 == 1);
assert(vertex_mate[vertex_top_blossom[path.edges.front().first]->base_vertex] == NO_VERTEX); assert(vertex_mate[
assert(vertex_mate[vertex_top_blossom[path.edges.back().second]->base_vertex] == NO_VERTEX); top_level_blossom(path.edges.front().first)->base_vertex]
== NO_VERTEX);
assert(vertex_mate[
top_level_blossom(path.edges.back().second)->base_vertex]
== NO_VERTEX);
// Process the unmatched edges on the augmenting path. // Process the unmatched edges on the augmenting path.
auto edge_it = path.edges.begin(); auto edge_it = path.edges.begin();
@ -1522,13 +1520,13 @@ public:
VertexId y = edge_it->second; VertexId y = edge_it->second;
// Augment any non-trivial blossoms that touch this edge. // Augment any non-trivial blossoms that touch this edge.
BlossomT* bx = vertex_top_blossom[x]; BlossomT* bx = top_level_blossom(x);
NonTrivialBlossomT* bx_ntb = bx->nontrivial(); NonTrivialBlossomT* bx_ntb = bx->nontrivial();
if (bx_ntb != nullptr) { if (bx_ntb != nullptr) {
augment_blossom(bx_ntb, &trivial_blossom[x]); augment_blossom(bx_ntb, &trivial_blossom[x]);
} }
BlossomT* by = vertex_top_blossom[y]; BlossomT* by = top_level_blossom(y);
NonTrivialBlossomT* by_ntb = by->nontrivial(); NonTrivialBlossomT* by_ntb = by->nontrivial();
if (by_ntb != nullptr) { if (by_ntb != nullptr) {
augment_blossom(by_ntb, &trivial_blossom[y]); augment_blossom(by_ntb, &trivial_blossom[y]);
@ -1557,8 +1555,6 @@ public:
* via its matched edge. All vertices in the newly labeled S-blossom * via its matched edge. All vertices in the newly labeled S-blossom
* are added to the scan queue. * are added to the scan queue.
* *
* All vertices in the newly labeled blossom are added to the scan queue.
*
* @pre "x" is an unlabeled vertex. * @pre "x" is an unlabeled vertex.
* @pre "x" is matched to a T-vertex via a tight edge. * @pre "x" is matched to a T-vertex via a tight edge.
*/ */
@ -1658,9 +1654,10 @@ public:
// Otherwise the path is an augmenting path. // Otherwise the path is an augmenting path.
// Note that an alternating starts and ends in the same blossom, // Note that an alternating starts and ends in the same blossom,
// but not necessarily in the same vertex within that blossom. // but not necessarily in the same vertex within that blossom.
// TODO -- directly check whether both blossoms are in the same tree
VertexId p = path.edges.front().first; VertexId p = path.edges.front().first;
VertexId q = path.edges.back().second; VertexId q = path.edges.back().second;
if (vertex_top_blossom[p] == vertex_top_blossom[q]) { if (top_level_blossom(p) == top_level_blossom(q)) {
make_blossom(path); make_blossom(path);
return false; return false;
} else { } else {
@ -1873,7 +1870,7 @@ public:
// unlocked through the delta update. // unlocked through the delta update.
VertexId x = delta.edge.first; VertexId x = delta.edge.first;
VertexId y = delta.edge.second; VertexId y = delta.edge.second;
if (vertex_top_blossom[x]->label != LABEL_S) { if (top_level_blossom(x)->label != LABEL_S) {
std::swap(x, y); std::swap(x, y);
} }
extend_tree_s_to_t(x, y); extend_tree_s_to_t(x, y);