Simplify naming related to double weights
This commit is contained in:
parent
d4bfb712d2
commit
0f7423e2b8
|
@ -6,7 +6,7 @@ from __future__ import annotations
|
|||
|
||||
import sys
|
||||
import math
|
||||
from typing import cast, NamedTuple, Optional
|
||||
from typing import NamedTuple, Optional
|
||||
|
||||
|
||||
def maximum_weight_matching(
|
||||
|
@ -86,16 +86,7 @@ def maximum_weight_matching(
|
|||
# Verification is a redundant step; if the matching algorithm is correct,
|
||||
# verification will always pass.
|
||||
if graph.integer_weights:
|
||||
# TODO : Maybe interesting to redesign blossom/dual data structures such
|
||||
# that this info for verification is easier to extract.
|
||||
blossom_dual_var = [
|
||||
(2 * blossom.half_dual_var if blossom is not None else 0)
|
||||
for blossom in matching.blossom]
|
||||
_verify_optimum(graph,
|
||||
pairs,
|
||||
cast(list[int], matching.dual_var),
|
||||
matching.blossom_parent,
|
||||
cast(list[int], blossom_dual_var))
|
||||
_verify_optimum(matching)
|
||||
|
||||
return pairs
|
||||
|
||||
|
@ -428,9 +419,9 @@ class _Blossom:
|
|||
|
||||
# Every blossom has a variable in the dual LPP.
|
||||
#
|
||||
# "half_dual_var" is half of the current value of the dual variable.
|
||||
# "dual_var" is the current value of the dual variable.
|
||||
# New blossoms start with dual variable 0.
|
||||
self.half_dual_var: int|float = 0
|
||||
self.dual_var: int|float = 0
|
||||
|
||||
|
||||
class _PartialMatching:
|
||||
|
@ -497,26 +488,26 @@ class _PartialMatching:
|
|||
|
||||
# Every vertex has a variable in the dual LPP.
|
||||
#
|
||||
# "dual_var[v]" is the current value of the dual variable of "v".
|
||||
# "dual_var_2x[v]" is 2 times the dual variable of "v".
|
||||
# Multiplication by 2 ensures that the values are integers
|
||||
# if all edge weights are integers.
|
||||
#
|
||||
# Vertex duals are initialized to half the maximum edge weight.
|
||||
# Note that we multiply all edge weights by 2, and half of 2 times
|
||||
# the maximum edge weight is simply the maximum edge weight.
|
||||
max_weight = max(wt for (_i, _j, wt) in graph.edges)
|
||||
self.dual_var: list[int|float] = graph.num_vertex * [max_weight]
|
||||
self.dual_var_2x: list[int|float] = graph.num_vertex * [max_weight]
|
||||
|
||||
def edge_slack(self, e: int) -> int|float:
|
||||
"""Return the slack of the edge with index "e".
|
||||
def edge_slack_2x(self, e: int) -> int|float:
|
||||
"""Return 2 times the slack of the edge with index "e".
|
||||
|
||||
The result is only valid for edges that are not between vertices
|
||||
that belong to the same top-level blossom.
|
||||
|
||||
Slack values are integers if all edge weights are even integers.
|
||||
For this reason, we multiply all edge weights by 2.
|
||||
Multiplication by 2 ensures that the return value is an integer
|
||||
if all edge weights are integers.
|
||||
"""
|
||||
(i, j, wt) = self.graph.edges[e]
|
||||
assert self.vertex_blossom[i] != self.vertex_blossom[j]
|
||||
return self.dual_var[i] + self.dual_var[j] - 2 * wt
|
||||
return self.dual_var_2x[i] + self.dual_var_2x[j] - 2 * wt
|
||||
|
||||
def get_blossom(self, b: int) -> _Blossom:
|
||||
"""Return the Blossom instance for blossom index "b"."""
|
||||
|
@ -818,7 +809,7 @@ def _make_blossom(
|
|||
continue
|
||||
|
||||
# Keep only the least-slack edge to "vblossom".
|
||||
slack = matching.edge_slack(e)
|
||||
slack = matching.edge_slack_2x(e)
|
||||
if ((best_edge_to_blossom[vblossom] == -1)
|
||||
or (slack < best_slack_to_blossom[vblossom])):
|
||||
best_edge_to_blossom[vblossom] = e
|
||||
|
@ -834,7 +825,7 @@ def _make_blossom(
|
|||
best_edge = -1
|
||||
best_slack: int|float = 0
|
||||
for e in best_edge_set:
|
||||
slack = matching.edge_slack(e)
|
||||
slack = matching.edge_slack_2x(e)
|
||||
if (best_edge == -1) or (slack < best_slack):
|
||||
best_edge = e
|
||||
best_slack = slack
|
||||
|
@ -1007,7 +998,7 @@ def _substage_scan(
|
|||
|
||||
# Check whether this edge is tight (has zero slack).
|
||||
# Only tight edges may be part of an alternating tree.
|
||||
slack = matching.edge_slack(e)
|
||||
slack = matching.edge_slack_2x(e)
|
||||
if slack <= 0:
|
||||
if wlabel == _LABEL_NONE:
|
||||
# Assign label T to the blossom that contains vertex "w".
|
||||
|
@ -1024,7 +1015,8 @@ def _substage_scan(
|
|||
elif wlabel == _LABEL_S:
|
||||
# Update tracking of least-slack edges between S-blossoms.
|
||||
best_edge = stage_data.blossom_best_edge[vblossom]
|
||||
if best_edge < 0 or slack < matching.edge_slack(best_edge):
|
||||
if ((best_edge < 0)
|
||||
or (slack < matching.edge_slack_2x(best_edge))):
|
||||
stage_data.blossom_best_edge[vblossom] = e
|
||||
|
||||
# Update the list of least-slack edges to S-blossoms for
|
||||
|
@ -1043,7 +1035,7 @@ def _substage_scan(
|
|||
# later. At that point we will need a zero-slack edge to
|
||||
# relabel vertex "w".
|
||||
best_edge = stage_data.vertex_best_edge[w]
|
||||
if best_edge < 0 or slack < matching.edge_slack(best_edge):
|
||||
if best_edge < 0 or slack < matching.edge_slack_2x(best_edge):
|
||||
stage_data.vertex_best_edge[w] = e
|
||||
|
||||
# No further S vertices to scan, and no augmenting path found.
|
||||
|
@ -1192,7 +1184,7 @@ def _expand_zero_dual_blossoms(matching: _PartialMatching) -> None:
|
|||
# the most recent delta step. Those blossoms have dual variable
|
||||
# _exactly_ zero. So this comparison is reliable, even in case
|
||||
# of floating point edge weights.
|
||||
if blossom.half_dual_var == 0:
|
||||
if blossom.dual_var == 0:
|
||||
stack.append(b)
|
||||
|
||||
# Use an explicit stack to avoid deep recursion.
|
||||
|
@ -1217,7 +1209,7 @@ def _expand_zero_dual_blossoms(matching: _PartialMatching) -> None:
|
|||
else:
|
||||
# Non-trivial sub-blossom.
|
||||
# If its dual variable is zero, we expand it recursively.
|
||||
if matching.get_blossom(sub).half_dual_var == 0:
|
||||
if matching.get_blossom(sub).dual_var == 0:
|
||||
stack.append(sub)
|
||||
else:
|
||||
# This sub-blossom will not be expanded.
|
||||
|
@ -1347,8 +1339,9 @@ def _calc_dual_delta(
|
|||
and the type of delta which obtain the minimum, and the edge or blossom
|
||||
that produces the minimum delta, if applicable.
|
||||
|
||||
The returned delta value is an integer if all edge weights are even
|
||||
integers.
|
||||
The returned value is 2 times the actual delta value.
|
||||
Multiplication by 2 ensures that the result is an integer if all edge
|
||||
weights are integers.
|
||||
|
||||
This function assumes that there is at least one S-vertex.
|
||||
This function takes time O(n).
|
||||
|
@ -1363,7 +1356,7 @@ def _calc_dual_delta(
|
|||
|
||||
# Compute delta1: minimum dual variable of any S-vertex.
|
||||
delta_type = 1
|
||||
delta = min(matching.dual_var[v]
|
||||
delta_2x = min(matching.dual_var_2x[v]
|
||||
for v in range(num_vertex)
|
||||
if stage_data.blossom_label[matching.vertex_blossom[v]])
|
||||
|
||||
|
@ -1374,10 +1367,10 @@ def _calc_dual_delta(
|
|||
if stage_data.blossom_label[vb] == _LABEL_NONE:
|
||||
e = stage_data.vertex_best_edge[v]
|
||||
if e != -1:
|
||||
slack = matching.edge_slack(e)
|
||||
if slack <= delta:
|
||||
slack = matching.edge_slack_2x(e)
|
||||
if slack <= delta_2x:
|
||||
delta_type = 2
|
||||
delta = slack
|
||||
delta_2x = slack
|
||||
delta_edge = e
|
||||
|
||||
# Compute delta3: half minimum slack of any edge between two top-level
|
||||
|
@ -1387,7 +1380,7 @@ def _calc_dual_delta(
|
|||
and matching.blossom_parent[b] == -1):
|
||||
e = stage_data.blossom_best_edge[b]
|
||||
if e != -1:
|
||||
slack = matching.edge_slack(e)
|
||||
slack = matching.edge_slack_2x(e)
|
||||
if matching.graph.integer_weights:
|
||||
# If all edge weights are even integers, the slack
|
||||
# of any edge between two S blossoms is also an even
|
||||
|
@ -1396,28 +1389,28 @@ def _calc_dual_delta(
|
|||
slack = slack // 2
|
||||
else:
|
||||
slack = slack / 2
|
||||
if slack <= delta:
|
||||
if slack <= delta_2x:
|
||||
delta_type = 3
|
||||
delta = slack
|
||||
delta_2x = slack
|
||||
delta_edge = e
|
||||
|
||||
# Compute delta4: half minimum dual variable of any T-blossom.
|
||||
for b in range(num_vertex, 2 * num_vertex):
|
||||
if (stage_data.blossom_label[b] == _LABEL_T
|
||||
and matching.blossom_parent[b] == -1):
|
||||
slack = matching.get_blossom(b).half_dual_var
|
||||
if slack < delta:
|
||||
slack = matching.get_blossom(b).dual_var
|
||||
if slack < delta_2x:
|
||||
delta_type = 4
|
||||
delta = slack
|
||||
delta_2x = slack
|
||||
delta_blossom = b
|
||||
|
||||
return (delta_type, delta, delta_edge, delta_blossom)
|
||||
return (delta_type, delta_2x, delta_edge, delta_blossom)
|
||||
|
||||
|
||||
def _apply_delta_step(
|
||||
matching: _PartialMatching,
|
||||
stage_data: _StageData,
|
||||
delta: int|float
|
||||
delta_2x: int|float
|
||||
) -> None:
|
||||
"""Apply a delta step to the dual LPP variables."""
|
||||
|
||||
|
@ -1428,10 +1421,10 @@ def _apply_delta_step(
|
|||
vlabel = stage_data.blossom_label[matching.vertex_blossom[v]]
|
||||
if vlabel == _LABEL_S:
|
||||
# S-vertex: subtract delta from dual variable.
|
||||
matching.dual_var[v] -= delta
|
||||
matching.dual_var_2x[v] -= delta_2x
|
||||
elif vlabel == _LABEL_T:
|
||||
# T-vertex: add delta to dual variable.
|
||||
matching.dual_var[v] += delta
|
||||
matching.dual_var_2x[v] += delta_2x
|
||||
|
||||
# Apply delta to dual variables of top-level non-trivial blossoms.
|
||||
for b in range(num_vertex, 2 * num_vertex):
|
||||
|
@ -1439,10 +1432,10 @@ def _apply_delta_step(
|
|||
blabel = stage_data.blossom_label[b]
|
||||
if blabel == _LABEL_S:
|
||||
# S-blossom: add 2*delta to dual variable.
|
||||
matching.get_blossom(b).half_dual_var += delta
|
||||
matching.get_blossom(b).dual_var += delta_2x
|
||||
elif blabel == _LABEL_T:
|
||||
# T-blossom: subtract 2*delta from dual variable.
|
||||
matching.get_blossom(b).half_dual_var -= delta
|
||||
matching.get_blossom(b).dual_var -= delta_2x
|
||||
|
||||
|
||||
def _run_stage(matching: _PartialMatching) -> bool:
|
||||
|
@ -1492,11 +1485,11 @@ def _run_stage(matching: _PartialMatching) -> bool:
|
|||
break
|
||||
|
||||
# Calculate delta step in the dual LPP problem.
|
||||
(delta_type, delta, delta_edge, delta_blossom
|
||||
(delta_type, delta_2x, delta_edge, delta_blossom
|
||||
) = _calc_dual_delta(matching, stage_data)
|
||||
|
||||
# Apply the delta step to the dual variables.
|
||||
_apply_delta_step(matching, stage_data, delta)
|
||||
_apply_delta_step(matching, stage_data, delta_2x)
|
||||
|
||||
if delta_type == 2:
|
||||
# Use the edge from S-vertex to unlabeled vertex that got
|
||||
|
@ -1539,13 +1532,7 @@ def _run_stage(matching: _PartialMatching) -> bool:
|
|||
return (augmenting_path is not None)
|
||||
|
||||
|
||||
def _verify_optimum(
|
||||
graph: _GraphInfo,
|
||||
pairs: list[tuple[int, int]],
|
||||
vertex_dual_var: list[int],
|
||||
blossom_parent: list[int],
|
||||
blossom_dual_var: list[int]
|
||||
) -> None:
|
||||
def _verify_optimum(matching: _PartialMatching) -> None:
|
||||
"""Verify that the optimum solution has been found.
|
||||
|
||||
This function takes time O(m * n).
|
||||
|
@ -1554,53 +1541,60 @@ def _verify_optimum(
|
|||
AssertionError: If the solution is not optimal.
|
||||
"""
|
||||
|
||||
# Find mate of each matched vertex.
|
||||
# Double-check that each vertex is matched to at most one other.
|
||||
vertex_mate = (graph.num_vertex) * [-1]
|
||||
for (i, j) in pairs:
|
||||
assert vertex_mate[i] == -1
|
||||
assert vertex_mate[j] == -1
|
||||
vertex_mate[i] = j
|
||||
vertex_mate[j] = i
|
||||
num_vertex = matching.graph.num_vertex
|
||||
|
||||
vertex_mate = matching.vertex_mate
|
||||
vertex_dual_var_2x = matching.dual_var_2x
|
||||
|
||||
# Extract dual values of blossoms
|
||||
blossom_dual_var = [
|
||||
(blossom.dual_var if blossom is not None else 0)
|
||||
for blossom in matching.blossom]
|
||||
|
||||
# Double-check that each matching edge actually exists in the graph.
|
||||
nmatched = 0
|
||||
for (i, j, _wt) in graph.edges:
|
||||
num_matched_vertex = 0
|
||||
for v in range(num_vertex):
|
||||
if vertex_mate[v] != -1:
|
||||
num_matched_vertex += 1
|
||||
|
||||
num_matched_edge = 0
|
||||
for (i, j, _wt) in matching.graph.edges:
|
||||
if vertex_mate[i] == j:
|
||||
nmatched += 1
|
||||
assert len(pairs) == nmatched
|
||||
num_matched_edge += 1
|
||||
|
||||
assert num_matched_vertex == 2 * num_matched_edge
|
||||
|
||||
# Check that all dual variables are non-negative.
|
||||
assert min(vertex_dual_var) >= 0
|
||||
assert min(vertex_dual_var_2x) >= 0
|
||||
assert min(blossom_dual_var) >= 0
|
||||
|
||||
# Count the number of vertices in each blossom.
|
||||
blossom_nvertex = (2 * graph.num_vertex) * [0]
|
||||
for v in range(graph.num_vertex):
|
||||
b = blossom_parent[v]
|
||||
blossom_nvertex = (2 * num_vertex) * [0]
|
||||
for v in range(num_vertex):
|
||||
b = matching.blossom_parent[v]
|
||||
while b != -1:
|
||||
blossom_nvertex[b] += 1
|
||||
b = blossom_parent[b]
|
||||
b = matching.blossom_parent[b]
|
||||
|
||||
# Calculate slack of each edge.
|
||||
# Also count the number of matched edges in each blossom.
|
||||
blossom_nmatched = (2 * graph.num_vertex) * [0]
|
||||
blossom_nmatched = (2 * num_vertex) * [0]
|
||||
|
||||
for (i, j, wt) in graph.edges:
|
||||
for (i, j, wt) in matching.graph.edges:
|
||||
|
||||
# List blossoms that contain vertex "i".
|
||||
iblossoms = []
|
||||
bi = blossom_parent[i]
|
||||
bi = matching.blossom_parent[i]
|
||||
while bi != -1:
|
||||
iblossoms.append(bi)
|
||||
bi = blossom_parent[bi]
|
||||
bi = matching.blossom_parent[bi]
|
||||
|
||||
# List blossoms that contain vertex "j".
|
||||
jblossoms = []
|
||||
bj = blossom_parent[j]
|
||||
bj = matching.blossom_parent[j]
|
||||
while bj != -1:
|
||||
jblossoms.append(bj)
|
||||
bj = blossom_parent[bj]
|
||||
bj = matching.blossom_parent[bj]
|
||||
|
||||
# List blossoms that contain the edge (i, j).
|
||||
edge_blossoms = []
|
||||
|
@ -1613,9 +1607,9 @@ def _verify_optimum(
|
|||
# dual[i] + dual[j] - weight
|
||||
# + sum(dual[b] for blossoms "b" containing the edge)
|
||||
#
|
||||
# Note we always multiply edge weights by 2.
|
||||
slack = vertex_dual_var[i] + vertex_dual_var[j] - 2 * wt
|
||||
slack += sum(blossom_dual_var[b] for b in edge_blossoms)
|
||||
# Multiply weights by 2 to ensure integer values.
|
||||
slack = vertex_dual_var_2x[i] + vertex_dual_var_2x[j] - 2 * wt
|
||||
slack += 2 * sum(blossom_dual_var[b] for b in edge_blossoms)
|
||||
|
||||
# Check that all edges have non-negative slack.
|
||||
assert slack >= 0
|
||||
|
@ -1630,14 +1624,14 @@ def _verify_optimum(
|
|||
blossom_nmatched[b] += 1
|
||||
|
||||
# Check that all unmatched vertices have zero dual.
|
||||
for v in range(graph.num_vertex):
|
||||
for v in range(num_vertex):
|
||||
if vertex_mate[v] == -1:
|
||||
assert vertex_dual_var[v] == 0
|
||||
assert vertex_dual_var_2x[v] == 0
|
||||
|
||||
# Check that all blossoms with positive dual are "full".
|
||||
# A blossom is full if all except one of its vertices are matched
|
||||
# to another vertex in the same blossom.
|
||||
for b in range(graph.num_vertex, 2 * graph.num_vertex):
|
||||
for b in range(num_vertex, 2 * num_vertex):
|
||||
if blossom_dual_var[b] > 0:
|
||||
assert blossom_nvertex[b] == 2 * blossom_nmatched[b] + 1
|
||||
|
||||
|
|
Loading…
Reference in New Issue