812 lines
25 KiB
Python
812 lines
25 KiB
Python
|
"""
|
||
|
Data structures for matching.
|
||
|
|
||
|
Experimental.
|
||
|
"""
|
||
|
|
||
|
from typing import Generic, Optional, TypeVar
|
||
|
|
||
|
|
||
|
_NameT = TypeVar("_NameT")
|
||
|
_NameT2 = TypeVar("_NameT2")
|
||
|
_ElemT = TypeVar("_ElemT")
|
||
|
_ElemT2 = TypeVar("_ElemT2")
|
||
|
|
||
|
|
||
|
class UnionFindQueue(Generic[_NameT, _ElemT]):
|
||
|
"""Combination of disjoint set and priority queue.
|
||
|
|
||
|
A queue has a "name", which can be any Python object.
|
||
|
|
||
|
Each element has associated "data", which can be any Python object.
|
||
|
Each element has a priority.
|
||
|
|
||
|
The following operations can be done efficiently:
|
||
|
- Create a new queue containing one new element.
|
||
|
- Find the name of the queue that contains a given element.
|
||
|
- Change the priority of a given element.
|
||
|
- Find the element with lowest priority in a given queue.
|
||
|
- Merge two or more queues.
|
||
|
- Undo a previous merge step.
|
||
|
|
||
|
The implementation is essentially an AVL tree, with minimum-priority
|
||
|
tracking added to it.
|
||
|
"""
|
||
|
|
||
|
class Node(Generic[_NameT2, _ElemT2]):
|
||
|
"""Node in a UnionFindQueue."""
|
||
|
|
||
|
def __init__(self,
|
||
|
owner: "UnionFindQueue[_NameT2, _ElemT2]",
|
||
|
data: _ElemT2,
|
||
|
prio: float
|
||
|
) -> None:
|
||
|
"""Initialize a new element.
|
||
|
|
||
|
This method should not be called directly.
|
||
|
Instead, call UnionFindQueue.insert().
|
||
|
"""
|
||
|
self.owner: "Optional[UnionFindQueue[_NameT2, _ElemT2]]" = owner
|
||
|
self.data = data
|
||
|
self.prio = prio
|
||
|
self.min_node = self
|
||
|
self.height = 1
|
||
|
self.parent: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||
|
self.left: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||
|
self.right: "Optional[UnionFindQueue.Node[_NameT2, _ElemT2]]"
|
||
|
self.parent = None
|
||
|
self.left = None
|
||
|
self.right = None
|
||
|
|
||
|
def find(self) -> _NameT2:
|
||
|
"""Return the name of the queue that contains this element.
|
||
|
|
||
|
This function takes time O(log(n)).
|
||
|
"""
|
||
|
node = self
|
||
|
while node.parent is not None:
|
||
|
node = node.parent
|
||
|
assert node.owner is not None
|
||
|
return node.owner.name
|
||
|
|
||
|
def set_prio(self, prio: float) -> None:
|
||
|
"""Change the priority of this element."""
|
||
|
self.prio = prio
|
||
|
node = self
|
||
|
while True:
|
||
|
min_node = node
|
||
|
if node.left is not None:
|
||
|
left_min_node = node.left.min_node
|
||
|
if left_min_node.prio < min_node.prio:
|
||
|
min_node = left_min_node
|
||
|
if node.right is not None:
|
||
|
right_min_node = node.right.min_node
|
||
|
if right_min_node.prio < min_node.prio:
|
||
|
min_node = right_min_node
|
||
|
node.min_node = min_node
|
||
|
if node.parent is None:
|
||
|
break
|
||
|
node = node.parent
|
||
|
|
||
|
def __init__(self, name: _NameT) -> None:
|
||
|
"""Initialize an empty queue.
|
||
|
|
||
|
This function takes time O(1).
|
||
|
|
||
|
Parameters:
|
||
|
name: Name to assign to the new queue.
|
||
|
"""
|
||
|
self.name = name
|
||
|
self.tree: "Optional[UnionFindQueue.Node[_NameT, _ElemT]]" = None
|
||
|
self.sub_queues: "list[UnionFindQueue[_NameT, _ElemT]]" = []
|
||
|
self.split_nodes: "list[UnionFindQueue.Node[_NameT, _ElemT]]" = []
|
||
|
|
||
|
def clear(self) -> None:
|
||
|
"""Remove all elements from the queue.
|
||
|
|
||
|
This function takes time O(n).
|
||
|
"""
|
||
|
node = self.tree
|
||
|
self.tree = None
|
||
|
self.sub_queues = []
|
||
|
self.split_nodes.clear()
|
||
|
|
||
|
# Wipe pointers to enable refcounted garbage collection.
|
||
|
while node is not None:
|
||
|
prev_node = node
|
||
|
if node.left is not None:
|
||
|
node = node.left
|
||
|
prev_node.left = None
|
||
|
elif node.right is not None:
|
||
|
node = node.right
|
||
|
prev_node.right = None
|
||
|
else:
|
||
|
node = node.parent
|
||
|
prev_node.parent = None
|
||
|
|
||
|
def insert(self, elem: _ElemT, prio: float) -> Node[_NameT, _ElemT]:
|
||
|
"""Insert an element into the empty queue.
|
||
|
|
||
|
This function can only be used if the queue is empty.
|
||
|
Non-empty queues can grow only by merging.
|
||
|
|
||
|
This function takes time O(1).
|
||
|
|
||
|
Parameters:
|
||
|
elem: Element to insert.
|
||
|
prio: Initial priority of the new element.
|
||
|
"""
|
||
|
assert self.tree is None
|
||
|
self.tree = UnionFindQueue.Node(self, elem, prio)
|
||
|
return self.tree
|
||
|
|
||
|
def min_prio(self) -> float:
|
||
|
"""Return the minimum priority of any element in the queue.
|
||
|
|
||
|
The queue must be non-empty.
|
||
|
This function takes time O(1).
|
||
|
"""
|
||
|
node = self.tree
|
||
|
assert node is not None
|
||
|
return node.min_node.prio
|
||
|
|
||
|
def min_elem(self) -> _ElemT:
|
||
|
"""Return the element with minimum priority.
|
||
|
|
||
|
The queue must be non-empty.
|
||
|
This function takes time O(1).
|
||
|
"""
|
||
|
node = self.tree
|
||
|
assert node is not None
|
||
|
return node.min_node.data
|
||
|
|
||
|
def merge(self, sub_queues: "list[UnionFindQueue[_NameT, _ElemT]]") -> None:
|
||
|
"""Merge the specified queues.
|
||
|
|
||
|
This queue must inititially be empty.
|
||
|
All specified sub-queues must initially be non-empty.
|
||
|
|
||
|
This function removes all elements from the specified sub-queues
|
||
|
and adds them to this queue.
|
||
|
|
||
|
After merging, this queue retains a reference to the list of sub-queues.
|
||
|
|
||
|
This function takes time O(len(sub_queues) * log(n)).
|
||
|
"""
|
||
|
assert self.tree is None
|
||
|
assert not self.sub_queues
|
||
|
assert not self.split_nodes
|
||
|
assert sub_queues
|
||
|
|
||
|
# Keep the list of sub-queues.
|
||
|
self.sub_queues = sub_queues
|
||
|
|
||
|
# Move the root node from the first sub-queue to this queue.
|
||
|
# Clear its owner pointer.
|
||
|
self.tree = sub_queues[0].tree
|
||
|
assert self.tree is not None
|
||
|
sub_queues[0].tree = None
|
||
|
self.tree.owner = None
|
||
|
|
||
|
# Merge remaining sub-queues.
|
||
|
for sub in sub_queues[1:]:
|
||
|
|
||
|
# Pull the root node from the sub-queue.
|
||
|
# Clear its owner pointer.
|
||
|
subtree = sub.tree
|
||
|
assert subtree is not None
|
||
|
assert subtree.owner is sub
|
||
|
subtree.owner = None
|
||
|
|
||
|
# Merge our current tree with the tree from the sub-queue.
|
||
|
(self.tree, split_node) = self._merge_tree(self.tree, subtree)
|
||
|
|
||
|
# Keep track of the left-most node from the sub-queue.
|
||
|
self.split_nodes.append(split_node)
|
||
|
|
||
|
# Put the owner pointer in the root node.
|
||
|
self.tree.owner = self
|
||
|
|
||
|
def split(self) -> None:
|
||
|
"""Undo the merge step that filled this queue.
|
||
|
|
||
|
Remove all elements from this queue and put them back in
|
||
|
the sub-queues from which they came.
|
||
|
|
||
|
After splitting, this queue will be empty.
|
||
|
|
||
|
This function takes time O(k * log(n)).
|
||
|
"""
|
||
|
assert self.tree is not None
|
||
|
assert self.sub_queues
|
||
|
|
||
|
# Clear the owner pointer from the root node.
|
||
|
assert self.tree.owner is self
|
||
|
self.tree.owner = None
|
||
|
|
||
|
# Split the tree to reconstruct each sub-queue.
|
||
|
for (sub, split_node) in zip(self.sub_queues[:0:-1],
|
||
|
self.split_nodes[::-1]):
|
||
|
|
||
|
(tree, rtree) = self._split_tree(split_node)
|
||
|
|
||
|
# Assign the right tree to the sub-queue.
|
||
|
sub.tree = rtree
|
||
|
rtree.owner = sub
|
||
|
|
||
|
# Put the remaining tree in the first sub-queue.
|
||
|
self.sub_queues[0].tree = tree
|
||
|
tree.owner = self.sub_queues[0]
|
||
|
|
||
|
# Make this queue empty.
|
||
|
self.tree = None
|
||
|
self.sub_queues = []
|
||
|
self.split_nodes.clear()
|
||
|
|
||
|
@staticmethod
|
||
|
def _repair_node(node: Node[_NameT, _ElemT]) -> None:
|
||
|
"""Recalculate the height and min-priority information of the
|
||
|
specified node.
|
||
|
"""
|
||
|
|
||
|
# Repair node height.
|
||
|
lh = 0 if node.left is None else node.left.height
|
||
|
rh = 0 if node.right is None else node.right.height
|
||
|
node.height = 1 + max(lh, rh)
|
||
|
|
||
|
# Repair min-priority.
|
||
|
min_node = node
|
||
|
if node.left is not None:
|
||
|
left_min_node = node.left.min_node
|
||
|
if left_min_node.prio < min_node.prio:
|
||
|
min_node = left_min_node
|
||
|
if node.right is not None:
|
||
|
right_min_node = node.right.min_node
|
||
|
if right_min_node.prio < min_node.prio:
|
||
|
min_node = right_min_node
|
||
|
node.min_node = min_node
|
||
|
|
||
|
def _rotate_left(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||
|
"""Rotate the specified subtree to the left.
|
||
|
|
||
|
Return the new root node of the subtree.
|
||
|
"""
|
||
|
#
|
||
|
# N C
|
||
|
# / \ / \
|
||
|
# A C ---> N D
|
||
|
# / \ / \
|
||
|
# B D A B
|
||
|
#
|
||
|
parent = node.parent
|
||
|
new_top = node.right
|
||
|
assert new_top is not None
|
||
|
|
||
|
node.right = new_top.left
|
||
|
if node.right is not None:
|
||
|
node.right.parent = node
|
||
|
|
||
|
new_top.left = node
|
||
|
new_top.parent = parent
|
||
|
node.parent = new_top
|
||
|
|
||
|
if parent is not None:
|
||
|
if parent.left is node:
|
||
|
parent.left = new_top
|
||
|
elif parent.right is node:
|
||
|
parent.right = new_top
|
||
|
|
||
|
self._repair_node(node)
|
||
|
self._repair_node(new_top)
|
||
|
|
||
|
return new_top
|
||
|
|
||
|
def _rotate_right(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||
|
"""Rotate the specified node to the right.
|
||
|
|
||
|
Return the new root node of the subtree.
|
||
|
"""
|
||
|
#
|
||
|
# N A
|
||
|
# / \ / \
|
||
|
# A D ---> B N
|
||
|
# / \ / \
|
||
|
# B C C D
|
||
|
#
|
||
|
parent = node.parent
|
||
|
new_top = node.left
|
||
|
assert new_top is not None
|
||
|
|
||
|
node.left = new_top.right
|
||
|
if node.left is not None:
|
||
|
node.left.parent = node
|
||
|
|
||
|
new_top.right = node
|
||
|
new_top.parent = parent
|
||
|
node.parent = new_top
|
||
|
|
||
|
if parent is not None:
|
||
|
if parent.left is node:
|
||
|
parent.left = new_top
|
||
|
elif parent.right is node:
|
||
|
parent.right = new_top
|
||
|
|
||
|
self._repair_node(node)
|
||
|
self._repair_node(new_top)
|
||
|
|
||
|
return new_top
|
||
|
|
||
|
def _rebalance_up(self, node: Node[_NameT, _ElemT]) -> Node[_NameT, _ElemT]:
|
||
|
"""Repair and rebalance the specified node and its ancestors.
|
||
|
|
||
|
Return the root node of the rebalanced tree.
|
||
|
"""
|
||
|
|
||
|
# Walk up to the root of the tree.
|
||
|
while True:
|
||
|
|
||
|
lh = 0 if node.left is None else node.left.height
|
||
|
rh = 0 if node.right is None else node.right.height
|
||
|
|
||
|
if lh > rh + 1:
|
||
|
# This node is left-heavy. Rotate right to rebalance.
|
||
|
#
|
||
|
# N L
|
||
|
# / \ / \
|
||
|
# L \ / N
|
||
|
# / \ \ ---> / / \
|
||
|
# A B \ A B \
|
||
|
# \ \
|
||
|
# R R
|
||
|
#
|
||
|
lchild = node.left
|
||
|
assert lchild is not None
|
||
|
if ((lchild.right is not None)
|
||
|
and ((lchild.left is None)
|
||
|
or (lchild.right.height > lchild.left.height))):
|
||
|
# Double rotation.
|
||
|
lchild = self._rotate_left(lchild)
|
||
|
|
||
|
node = self._rotate_right(node)
|
||
|
|
||
|
elif lh + 1 < rh:
|
||
|
# This node is right-heavy. Rotate left to rebalance.
|
||
|
#
|
||
|
# N R
|
||
|
# / \ / \
|
||
|
# / R N \
|
||
|
# / / \ ---> / \ \
|
||
|
# / A B / A B
|
||
|
# / /
|
||
|
# L L
|
||
|
#
|
||
|
rchild = node.right
|
||
|
assert rchild is not None
|
||
|
if ((rchild.left is not None)
|
||
|
and ((rchild.right is None)
|
||
|
or (rchild.left.height > rchild.right.height))):
|
||
|
# Double rotation.
|
||
|
rchild = self._rotate_right(rchild)
|
||
|
|
||
|
node = self._rotate_left(node)
|
||
|
|
||
|
else:
|
||
|
# No rotation. Must still repair node though.
|
||
|
self._repair_node(node)
|
||
|
|
||
|
if node.parent is None:
|
||
|
break
|
||
|
|
||
|
# Continue rebalancing at the parent.
|
||
|
node = node.parent
|
||
|
|
||
|
# Return new root node.
|
||
|
return node
|
||
|
|
||
|
def _join_right(self,
|
||
|
ltree: Node[_NameT, _ElemT],
|
||
|
node: Node[_NameT, _ElemT],
|
||
|
rtree: Optional[Node[_NameT, _ElemT]]
|
||
|
) -> Node[_NameT, _ElemT]:
|
||
|
"""Join a left subtree, middle node and right subtree together.
|
||
|
|
||
|
The left subtree must be higher than the right subtree.
|
||
|
|
||
|
Return the root node of the joined tree.
|
||
|
"""
|
||
|
lh = ltree.height
|
||
|
rh = 0 if rtree is None else rtree.height
|
||
|
assert lh > rh + 1
|
||
|
|
||
|
# Descend down the right spine of "ltree".
|
||
|
# Stop at a node with compatible height, then insert "node"
|
||
|
# and attach "rtree".
|
||
|
#
|
||
|
# ltree
|
||
|
# / \
|
||
|
# X
|
||
|
# / \
|
||
|
# X <-- cur
|
||
|
# / \
|
||
|
# node
|
||
|
# / \
|
||
|
# X rtree
|
||
|
#
|
||
|
|
||
|
# Descend to a point with compatible height.
|
||
|
cur = ltree
|
||
|
while (cur.right is not None) and (cur.right.height > rh + 1):
|
||
|
cur = cur.right
|
||
|
|
||
|
# Insert "node" and "rtree".
|
||
|
node.left = cur.right
|
||
|
node.right = rtree
|
||
|
if node.left is not None:
|
||
|
node.left.parent = node
|
||
|
if rtree is not None:
|
||
|
rtree.parent = node
|
||
|
cur.right = node
|
||
|
node.parent = cur
|
||
|
|
||
|
# A double rotation may be necessary.
|
||
|
if (cur.left is None) or (cur.left.height <= rh):
|
||
|
node = self._rotate_right(node)
|
||
|
cur = self._rotate_left(cur)
|
||
|
else:
|
||
|
self._repair_node(node)
|
||
|
self._repair_node(cur)
|
||
|
|
||
|
# Ascend from "cur" to the root of the tree.
|
||
|
# Repair and/or rotate as needed.
|
||
|
while cur.parent is not None:
|
||
|
cur = cur.parent
|
||
|
assert cur.left is not None
|
||
|
assert cur.right is not None
|
||
|
|
||
|
if cur.left.height + 1 < cur.right.height:
|
||
|
cur = self._rotate_left(cur)
|
||
|
else:
|
||
|
self._repair_node(cur)
|
||
|
|
||
|
return cur
|
||
|
|
||
|
def _join_left(self,
|
||
|
ltree: Optional[Node[_NameT, _ElemT]],
|
||
|
node: Node[_NameT, _ElemT],
|
||
|
rtree: Node[_NameT, _ElemT]
|
||
|
) -> Node[_NameT, _ElemT]:
|
||
|
"""Join a left subtree, middle node and right subtree together.
|
||
|
|
||
|
The right subtree must be higher than the left subtree.
|
||
|
|
||
|
Return the root node of the joined tree.
|
||
|
"""
|
||
|
lh = 0 if ltree is None else ltree.height
|
||
|
rh = rtree.height
|
||
|
assert lh + 1 < rh
|
||
|
|
||
|
# Descend down the left spine of "rtree".
|
||
|
# Stop at a node with compatible height, then insert "node"
|
||
|
# and attach "ltree".
|
||
|
#
|
||
|
# rtree
|
||
|
# / \
|
||
|
# X
|
||
|
# / \
|
||
|
# cur --> X
|
||
|
# / \
|
||
|
# node
|
||
|
# / \
|
||
|
# ltree X
|
||
|
#
|
||
|
|
||
|
# Descend to a point with compatible height.
|
||
|
cur = rtree
|
||
|
while (cur.left is not None) and (cur.left.height > lh + 1):
|
||
|
cur = cur.left
|
||
|
|
||
|
# Insert "node" and "ltree".
|
||
|
node.left = ltree
|
||
|
node.right = cur.left
|
||
|
if ltree is not None:
|
||
|
ltree.parent = node
|
||
|
if node.right is not None:
|
||
|
node.right.parent = node
|
||
|
cur.left = node
|
||
|
node.parent = cur
|
||
|
|
||
|
# A double rotation may be necessary.
|
||
|
if (cur.right is None) or (cur.right.height <= lh):
|
||
|
node = self._rotate_left(node)
|
||
|
cur = self._rotate_right(cur)
|
||
|
else:
|
||
|
self._repair_node(node)
|
||
|
self._repair_node(cur)
|
||
|
|
||
|
# Ascend from "cur" to the root of the tree.
|
||
|
# Repair and/or rotate as needed.
|
||
|
while cur.parent is not None:
|
||
|
cur = cur.parent
|
||
|
assert cur.left is not None
|
||
|
assert cur.right is not None
|
||
|
|
||
|
if cur.left.height > cur.right.height + 1:
|
||
|
cur = self._rotate_right(cur)
|
||
|
else:
|
||
|
self._repair_node(cur)
|
||
|
|
||
|
return cur
|
||
|
|
||
|
def _join(self,
|
||
|
ltree: Optional[Node[_NameT, _ElemT]],
|
||
|
node: Node[_NameT, _ElemT],
|
||
|
rtree: Optional[Node[_NameT, _ElemT]]
|
||
|
) -> Node[_NameT, _ElemT]:
|
||
|
"""Join a left subtree, middle node and right subtree together.
|
||
|
|
||
|
The left or right subtree may initially be a child of the middle
|
||
|
node; such links will be broken as needed.
|
||
|
|
||
|
The left and right subtrees must be consistent, AVL-balanced trees.
|
||
|
Parent pointers of the subtrees are ignored.
|
||
|
|
||
|
The middle node is considered as a single node.
|
||
|
Its parent and child pointers are ignored.
|
||
|
|
||
|
Return the root node of the joined tree.
|
||
|
"""
|
||
|
lh = 0 if ltree is None else ltree.height
|
||
|
rh = 0 if rtree is None else rtree.height
|
||
|
|
||
|
if lh > rh + 1:
|
||
|
assert ltree is not None
|
||
|
ltree.parent = None
|
||
|
return self._join_right(ltree, node, rtree)
|
||
|
elif lh + 1 < rh:
|
||
|
assert rtree is not None
|
||
|
rtree.parent = None
|
||
|
return self._join_left(ltree, node, rtree)
|
||
|
else:
|
||
|
# Subtree heights are compatible. Just join them.
|
||
|
#
|
||
|
# node
|
||
|
# / \
|
||
|
# ltree rtree
|
||
|
# / \ / \
|
||
|
#
|
||
|
node.parent = None
|
||
|
node.left = ltree
|
||
|
if ltree is not None:
|
||
|
ltree.parent = node
|
||
|
node.right = rtree
|
||
|
if rtree is not None:
|
||
|
rtree.parent = node
|
||
|
self._repair_node(node)
|
||
|
return node
|
||
|
|
||
|
def _merge_tree(self,
|
||
|
ltree: Node[_NameT, _ElemT],
|
||
|
rtree: Node[_NameT, _ElemT]
|
||
|
) -> tuple[Node[_NameT, _ElemT], Node[_NameT, _ElemT]]:
|
||
|
"""Merge two trees.
|
||
|
|
||
|
Return a tuple (split_node, merged_tree).
|
||
|
"""
|
||
|
|
||
|
# Find the left-most node of the right tree.
|
||
|
split_node = rtree
|
||
|
while split_node.left is not None:
|
||
|
split_node = split_node.left
|
||
|
|
||
|
# Delete the split_node from its tree.
|
||
|
parent = split_node.parent
|
||
|
if split_node.right is not None:
|
||
|
split_node.right.parent = parent
|
||
|
if parent is None:
|
||
|
rtree_new = split_node.right
|
||
|
else:
|
||
|
# Repair and rebalance the ancestors of split_node.
|
||
|
parent.left = split_node.right
|
||
|
rtree_new = self._rebalance_up(parent)
|
||
|
|
||
|
# Join the two trees via the split_node.
|
||
|
merged_tree = self._join(ltree, split_node, rtree_new)
|
||
|
|
||
|
return (merged_tree, split_node)
|
||
|
|
||
|
def _split_tree(self,
|
||
|
split_node: Node[_NameT, _ElemT]
|
||
|
) -> tuple[Node[_NameT, _ElemT], Node[_NameT, _ElemT]]:
|
||
|
"""Split a tree on a specified node.
|
||
|
|
||
|
Two new trees will be constructed.
|
||
|
All nodes to the left of "split_node" will go to the left tree.
|
||
|
All nodes to the right of "split_node", and "split_node" itself,
|
||
|
will go to the right tree.
|
||
|
|
||
|
Return tuple (ltree, rtree),
|
||
|
where ltree contains all nodes left of the split-node,
|
||
|
rtree contains the split-nodes and all nodes to its right.
|
||
|
"""
|
||
|
|
||
|
# Assign the descendants of "split_node" to the appropriate trees
|
||
|
# and detach them from "split_node".
|
||
|
ltree = split_node.left
|
||
|
rtree = split_node.right
|
||
|
|
||
|
split_node.left = None
|
||
|
split_node.right = None
|
||
|
if ltree is not None:
|
||
|
ltree.parent = None
|
||
|
if rtree is not None:
|
||
|
rtree.parent = None
|
||
|
|
||
|
# Detach "split_node" from its parent (if any).
|
||
|
parent = split_node.parent
|
||
|
split_node.parent = None
|
||
|
|
||
|
# Assign "split_node" to the right tree.
|
||
|
rtree = self._join(None, split_node, rtree)
|
||
|
|
||
|
# Walk up to the root of the tree.
|
||
|
# On the way up, detach each node from its parent and join it,
|
||
|
# and its descendants, to the appropriate tree.
|
||
|
node = split_node
|
||
|
while parent is not None:
|
||
|
|
||
|
# Ascend to the parent node.
|
||
|
child = node
|
||
|
node = parent
|
||
|
parent = node.parent
|
||
|
|
||
|
# Detach "node" from its parent.
|
||
|
node.parent = None
|
||
|
|
||
|
if node.left is child:
|
||
|
# "split_node" was located in the left subtree of "node".
|
||
|
# This implies that "node" must be joined to the right tree.
|
||
|
rtree = self._join(rtree, node, node.right)
|
||
|
|
||
|
else:
|
||
|
# "split_node" was located in the right subtree of "node".
|
||
|
# This implies that "node" must be joined to the right tree.
|
||
|
assert node.right is child
|
||
|
ltree = self._join(node.left, node, ltree)
|
||
|
|
||
|
assert ltree is not None
|
||
|
return (ltree, rtree)
|
||
|
|
||
|
|
||
|
class PriorityQueue(Generic[_ElemT]):
|
||
|
"""Priority queue based on a binary heap."""
|
||
|
|
||
|
class Node(Generic[_ElemT2]):
|
||
|
"""Node in the priority queue."""
|
||
|
|
||
|
__slots__ = ("index", "prio", "data")
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
index: int,
|
||
|
prio: float,
|
||
|
data: _ElemT2
|
||
|
) -> None:
|
||
|
self.index = index
|
||
|
self.prio = prio
|
||
|
self.data = data
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
"""Initialize an empty queue."""
|
||
|
self.heap: "list[PriorityQueue.Node[_ElemT]]" = []
|
||
|
|
||
|
def clear(self) -> None:
|
||
|
"""Remove all elements from the queue.
|
||
|
|
||
|
This function takes time O(n).
|
||
|
"""
|
||
|
self.heap.clear()
|
||
|
|
||
|
def empty(self) -> bool:
|
||
|
"""Return True if the queue is empty."""
|
||
|
return (not self.heap)
|
||
|
|
||
|
def find_min(self) -> Node[_ElemT]:
|
||
|
"""Return the minimum-priority node.
|
||
|
|
||
|
This function takes time O(1).
|
||
|
"""
|
||
|
if not self.heap:
|
||
|
raise IndexError("Queue is empty")
|
||
|
return self.heap[0]
|
||
|
|
||
|
def _sift_up(self, index: int) -> None:
|
||
|
"""Repair the heap along an ascending path to the root."""
|
||
|
node = self.heap[index]
|
||
|
prio = node.prio
|
||
|
|
||
|
pos = index
|
||
|
while pos > 0:
|
||
|
tpos = (pos - 1) // 2
|
||
|
tnode = self.heap[tpos]
|
||
|
if tnode.prio <= prio:
|
||
|
break
|
||
|
tnode.index = pos
|
||
|
self.heap[pos] = tnode
|
||
|
pos = tpos
|
||
|
|
||
|
if pos != index:
|
||
|
node.index = pos
|
||
|
self.heap[pos] = node
|
||
|
|
||
|
def _sift_down(self, index: int) -> None:
|
||
|
"""Repair the heap along a descending path."""
|
||
|
num_elem = len(self.heap)
|
||
|
node = self.heap[index]
|
||
|
prio = node.prio
|
||
|
|
||
|
pos = index
|
||
|
while True:
|
||
|
tpos = 2 * pos + 1
|
||
|
if tpos >= num_elem:
|
||
|
break
|
||
|
tnode = self.heap[tpos]
|
||
|
|
||
|
qpos = tpos + 1
|
||
|
if qpos < num_elem:
|
||
|
qnode = self.heap[qpos]
|
||
|
if qnode.prio <= tnode.prio:
|
||
|
tpos = qpos
|
||
|
tnode = qnode
|
||
|
|
||
|
if tnode.prio >= prio:
|
||
|
break
|
||
|
|
||
|
tnode.index = pos
|
||
|
self.heap[pos] = tnode
|
||
|
pos = tpos
|
||
|
|
||
|
if pos != index:
|
||
|
node.index = pos
|
||
|
self.heap[pos] = node
|
||
|
|
||
|
def insert(self, prio: float, data: _ElemT) -> Node:
|
||
|
"""Insert a new element into the queue.
|
||
|
|
||
|
This function takes time O(log(n)).
|
||
|
|
||
|
Returns:
|
||
|
Node that represents the new element.
|
||
|
"""
|
||
|
new_index = len(self.heap)
|
||
|
node = self.Node(new_index, prio, data)
|
||
|
self.heap.append(node)
|
||
|
self._sift_up(new_index)
|
||
|
return node
|
||
|
|
||
|
def delete(self, elem: Node[_ElemT]) -> None:
|
||
|
"""Delete the specified element from the queue.
|
||
|
|
||
|
This function takes time O(log(n)).
|
||
|
"""
|
||
|
index = elem.index
|
||
|
assert self.heap[index] is elem
|
||
|
|
||
|
node = self.heap.pop()
|
||
|
if index < len(self.heap):
|
||
|
node.index = index
|
||
|
self.heap[index] = node
|
||
|
if node.prio < elem.prio:
|
||
|
self._sift_up(index)
|
||
|
elif node.prio > elem.prio:
|
||
|
self._sift_down(index)
|
||
|
|
||
|
def decrease_prio(self, elem: Node[_ElemT], prio: float) -> None:
|
||
|
"""Decrease the priority of an existing element in the queue.
|
||
|
|
||
|
This function takes time O(log(n)).
|
||
|
"""
|
||
|
assert self.heap[elem.index] is elem
|
||
|
assert prio <= elem.prio
|
||
|
elem.prio = prio
|
||
|
self._sift_up(elem.index)
|