1098 lines
31 KiB
C++
1098 lines
31 KiB
C++
/*
|
|
* Data structures for matching.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
|
|
/* **************************************************
|
|
* ** class ConcatenableQueue **
|
|
* ************************************************** */
|
|
|
|
/**
|
|
* Priority queue supporting efficient merge and split operations.
|
|
*
|
|
* Conceptually, this is a combination of a disjoint set and a priority queue.
|
|
* Each queue has a "name".
|
|
* Each element has associated "data".
|
|
* Each element has a priority.
|
|
* Each element is contained in at most one queue at any time.
|
|
*
|
|
* The following operations can be done efficiently:
|
|
* - Find the name of the queue that contains a given element.
|
|
* - Change the priority of a given element.
|
|
* - Find the element with lowest priority in a given queue.
|
|
* - Merge two or more queues.
|
|
* - Undo a previous merge step.
|
|
*
|
|
* A ConcatenableQueue instance may be destructed if it is empty and not
|
|
* currently merged into a larger queue. Alternatively, a group of related
|
|
* ConcatenableQueue instances and their Node instances may be destructed
|
|
* together, even if non-empty. In this case, the objects may be destructed
|
|
* in any order. No other interactions with the objects are allowed once
|
|
* destruction has started.
|
|
*
|
|
* This data structure is implemented as an AVL tree, with minimum-priority
|
|
* tracking added to it.
|
|
* See also
|
|
* https://en.wikipedia.org/wiki/Avl_tree
|
|
* and
|
|
* G. Blelloch, D. Ferizovic, Y. Sun, Parallel Ordered Sets Using Join,
|
|
* https://arxiv.org/abs/1602.02120
|
|
*/
|
|
template <typename PrioType,
|
|
typename NameType,
|
|
typename DataType>
|
|
class ConcatenableQueue
|
|
{
|
|
public:
|
|
|
|
/**
|
|
* A Node instance represents an element in a concatenable queue.
|
|
*
|
|
* A Node instance must remain valid while it is contained in a queue.
|
|
* The containing queue holds a pointer to the Node.
|
|
*
|
|
* A Node instance may be destructed if it is not contained in any queue.
|
|
* Alternatively, a Node instance may be destructed just before or after
|
|
* destructing the containing queue. In this case, no intermediate
|
|
* interactions with the node or queue are allowed.
|
|
*/
|
|
class Node
|
|
{
|
|
public:
|
|
/** Construct an unused node, not yet contained in any queue. */
|
|
Node()
|
|
: owner_(nullptr),
|
|
parent_(nullptr),
|
|
left_child_(nullptr),
|
|
right_child_(nullptr),
|
|
height_(0)
|
|
{ }
|
|
|
|
// Prevent copying.
|
|
Node(const Node&) = delete;
|
|
Node& operator=(const Node&) = delete;
|
|
|
|
/**
|
|
* Return the name of the queue that contains this element.
|
|
*
|
|
* The node must be contained in a queue.
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
NameType find()
|
|
{
|
|
Node* node = this;
|
|
while (node->parent_) {
|
|
node = node->parent_;
|
|
}
|
|
assert(node->owner_);
|
|
return node->owner_->name();
|
|
}
|
|
|
|
/**
|
|
* Return the priority of this element.
|
|
*
|
|
* The node must be contained in a queue.
|
|
* This function takes time O(1).
|
|
*/
|
|
PrioType prio() const
|
|
{
|
|
assert(height_ != 0);
|
|
return prio_;
|
|
}
|
|
|
|
/**
|
|
* Change the priority of this element.
|
|
*
|
|
* The node must be contained in a queue.
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
void set_prio(PrioType new_prio)
|
|
{
|
|
assert(height_ != 0);
|
|
|
|
prio_ = new_prio;
|
|
|
|
Node* node = this;
|
|
while (node) {
|
|
PrioType min_prio = node->prio_;
|
|
DataType min_data = node->data_;
|
|
for (Node* child : { node->left_child_,
|
|
node->right_child_ }) {
|
|
if (child && child->min_prio_ < min_prio) {
|
|
min_prio = child->min_prio_;
|
|
min_data = child->min_data_;
|
|
}
|
|
}
|
|
node->min_prio_ = min_prio;
|
|
node->min_data_ = min_data;
|
|
node = node->parent_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
PrioType prio_;
|
|
DataType data_;
|
|
PrioType min_prio_;
|
|
DataType min_data_;
|
|
ConcatenableQueue* owner_;
|
|
Node* parent_;
|
|
Node* left_child_;
|
|
Node* right_child_;
|
|
unsigned int height_;
|
|
|
|
friend class ConcatenableQueue;
|
|
};
|
|
|
|
/** Construct an empty queue. */
|
|
ConcatenableQueue()
|
|
: tree_(nullptr)
|
|
, first_node_(nullptr)
|
|
, first_subqueue_(nullptr)
|
|
, next_subqueue_(nullptr)
|
|
{ }
|
|
|
|
// Prevent copying.
|
|
ConcatenableQueue(const ConcatenableQueue&) = delete;
|
|
ConcatenableQueue& operator=(const ConcatenableQueue&) = delete;
|
|
|
|
/** Return the name of this queue. */
|
|
NameType name() const
|
|
{
|
|
return name_;
|
|
}
|
|
|
|
/** Assign a name to this queue. */
|
|
void set_name(const NameType& name)
|
|
{
|
|
name_ = name;
|
|
}
|
|
|
|
/**
|
|
* Insert the specified Node into the queue.
|
|
*
|
|
* The Node instance must be unused (not yet contained in any queue).
|
|
*
|
|
* The queue must be empty. Only one element can be inserted into
|
|
* a queue in this way. Larger queues can only result from merging.
|
|
*
|
|
* The queue stores a pointer to the Node instance. The Node instance must
|
|
* remain valid for as long as it is contained in any queue.
|
|
*
|
|
* This function takes time O(1).
|
|
*/
|
|
void insert(Node* node, PrioType prio, const DataType& data)
|
|
{
|
|
assert(! tree_);
|
|
assert(! first_node_);
|
|
assert(node->height_ == 0);
|
|
assert(! node->parent_);
|
|
assert(! node->left_child_);
|
|
assert(! node->right_child_);
|
|
|
|
node->prio_ = prio;
|
|
node->data_ = data;
|
|
node->min_prio_ = prio;
|
|
node->min_data_ = data;
|
|
node->owner_ = this;
|
|
node->height_ = 1;
|
|
|
|
tree_ = node;
|
|
first_node_ = node;
|
|
}
|
|
|
|
/**
|
|
* Return the minimum priority of any element in the queue.
|
|
*
|
|
* The queue must be non-empty.
|
|
* This function takes time O(1).
|
|
*/
|
|
PrioType min_prio() const
|
|
{
|
|
assert(tree_);
|
|
return tree_->min_prio_;
|
|
}
|
|
|
|
/**
|
|
* Return the element with minimum priority.
|
|
*
|
|
* The queue must be non-empty.
|
|
* This function takes time O(1).
|
|
*/
|
|
DataType min_elem() const
|
|
{
|
|
assert(tree_);
|
|
return tree_->min_data_;
|
|
}
|
|
|
|
/**
|
|
* Merge the specified queues.
|
|
*
|
|
* This queue instance must inititially be empty.
|
|
* All specified sub-queues must initially be non-empty.
|
|
*
|
|
* This function removes all elements from the specified sub-queues
|
|
* and adds them to this queue.
|
|
*
|
|
* After merging, this queue retains references to the sub-queues.
|
|
* This may be used later to split (undo the merge step).
|
|
*
|
|
* This function takes time O(len(sub_queues) * log(n)).
|
|
*/
|
|
template <typename QueueIterator>
|
|
void merge(QueueIterator sub_queues_begin, QueueIterator sub_queues_end)
|
|
{
|
|
assert(! tree_);
|
|
assert(! first_node_);
|
|
assert(sub_queues_begin != sub_queues_end);
|
|
|
|
// Pull the root node from the first sub-queue.
|
|
ConcatenableQueue* sub = *sub_queues_begin;
|
|
assert(sub->tree_);
|
|
Node* merged_tree = sub->tree_;
|
|
sub->tree_ = nullptr;
|
|
|
|
// Clear owner pointer from tree.
|
|
assert(merged_tree->owner_ == sub);
|
|
merged_tree->owner_ = nullptr;
|
|
|
|
// Copy first node to this queue.
|
|
assert(sub->first_node_);
|
|
first_node_ = sub->first_node_;
|
|
|
|
// Build linked list of sub-queues, starting with the first sub-queue.
|
|
assert(! sub->next_subqueue_);
|
|
first_subqueue_ = sub;
|
|
|
|
// Merge remaining sub-queues.
|
|
QueueIterator it = sub_queues_begin;
|
|
++it;
|
|
while (it != sub_queues_end) {
|
|
ConcatenableQueue* prev_sub = sub;
|
|
sub = *it;
|
|
|
|
// Clear owner pointer and root node from the sub-queue.
|
|
assert(sub->tree_);
|
|
assert(sub->tree_->owner_ == sub);
|
|
sub->tree_->owner_ = nullptr;
|
|
|
|
// Merge sub-queue tree into our current tree.
|
|
merged_tree = merge_tree(merged_tree, sub->tree_);
|
|
|
|
// Clear root pointer from sub-queue.
|
|
sub->tree_ = nullptr;
|
|
|
|
// Add sub-queue to linked list of sub-queues.
|
|
assert(! sub->next_subqueue_);
|
|
prev_sub->next_subqueue_ = sub;
|
|
|
|
++it;
|
|
}
|
|
|
|
// Put owner pointer in the root node of the tree.
|
|
merged_tree->owner_ = this;
|
|
tree_ = merged_tree;
|
|
}
|
|
|
|
/**
|
|
* Undo the merge step that created this queue.
|
|
*
|
|
* Remove all elements from this queue and put them back in
|
|
* the sub-queues from which they came.
|
|
*
|
|
* After splitting, this queue will be empty.
|
|
*
|
|
* This function takes time O(k * log(n)).
|
|
*/
|
|
void split()
|
|
{
|
|
assert(tree_);
|
|
assert(first_subqueue_);
|
|
|
|
// Clear the owner pointer from the root node.
|
|
assert(tree_->owner_ == this);
|
|
tree_->owner_ = nullptr;
|
|
|
|
Node* rtree = tree_;
|
|
ConcatenableQueue* sub = first_subqueue_;
|
|
|
|
// Repeatedly split the tree to reconstruct each sub-queue.
|
|
while (sub->next_subqueue_) {
|
|
ConcatenableQueue* next_sub = sub->next_subqueue_;
|
|
sub->next_subqueue_ = nullptr;
|
|
|
|
// Split the tree on the first node of the next sub-queue.
|
|
assert(next_sub->first_node_);
|
|
Node* ltree;
|
|
std::tie(ltree, rtree) = split_tree(next_sub->first_node_);
|
|
|
|
// Put the left half of the tree in the current sub-queue.
|
|
sub->tree_ = ltree;
|
|
ltree->owner_ = sub;
|
|
|
|
// Continue to next sub-queue.
|
|
sub = next_sub;
|
|
}
|
|
|
|
// Put the remaining part of the tree in the last sub-queue.
|
|
rtree->owner_ = sub;
|
|
sub->tree_ = rtree;
|
|
|
|
// Clean up this instance.
|
|
tree_ = nullptr;
|
|
first_node_ = nullptr;
|
|
first_subqueue_ = nullptr;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Merge two trees and rebalance.
|
|
*
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
static Node* merge_tree(Node* ltree, Node* rtree)
|
|
{
|
|
// Remove the last node from the left tree.
|
|
Node* node;
|
|
std::tie(ltree, node) = split_last_node(ltree);
|
|
|
|
// Join the trees.
|
|
return join(ltree, node, rtree);
|
|
}
|
|
|
|
/**
|
|
* Remove the last node from the tree and rebalance.
|
|
*
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
static std::tuple<Node*, Node*> split_last_node(Node* tree)
|
|
{
|
|
assert(tree);
|
|
|
|
/*
|
|
* Descend down the right spine of the tree to find the last node.
|
|
*
|
|
* tree
|
|
* / \
|
|
* X
|
|
* / \
|
|
* X <-- parent
|
|
* / \
|
|
* last_node
|
|
* /
|
|
* X <-- ltree
|
|
*/
|
|
|
|
// Find last node.
|
|
Node* last_node = tree;
|
|
while (last_node->right_child_) {
|
|
last_node = last_node->right_child_;
|
|
}
|
|
|
|
// Detach its left subtree.
|
|
Node* ltree = last_node->left_child_;
|
|
last_node->left_child_ = nullptr;
|
|
if (ltree) {
|
|
ltree->parent_ = nullptr;
|
|
}
|
|
|
|
// Detach from the parent.
|
|
Node* parent = last_node->parent_;
|
|
last_node->parent_ = nullptr;
|
|
if (parent) {
|
|
parent->right_child_ = nullptr;
|
|
}
|
|
|
|
// Reconstruct along the right spine of the original tree.
|
|
while (parent) {
|
|
|
|
// Step to parent.
|
|
Node* cur = parent;
|
|
parent = cur->parent_;
|
|
|
|
// Detach from its own parent.
|
|
cur->parent_ = nullptr;
|
|
if (parent) {
|
|
parent->right_child_ = nullptr;
|
|
}
|
|
|
|
// Join the current node to the reconstructed tree.
|
|
ltree = join(cur->left_child_, cur, ltree);
|
|
}
|
|
|
|
return std::make_tuple(ltree, last_node);
|
|
}
|
|
|
|
/**
|
|
* Split a tree on a specified node.
|
|
*
|
|
* Two new trees will be constructed.
|
|
* Leaf nodes to the left of "split_node" will go to the left tree.
|
|
* Leaf nodes to the right of "split_node", and "split_node" itself,
|
|
* will go to the right tree.
|
|
*
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
static std::tuple<Node*, Node*> split_tree(Node* split_node)
|
|
{
|
|
assert(split_node);
|
|
|
|
// All left-descendants of "split_node" belong in the left tree.
|
|
// Detach it from "split_node".
|
|
Node* ltree = split_node->left_child_;
|
|
split_node->left_child_ = nullptr;
|
|
if (ltree) {
|
|
ltree->parent_ = nullptr;
|
|
}
|
|
|
|
// Start with an empty right tree.
|
|
Node* rtree = nullptr;
|
|
|
|
// Start at "split_node".
|
|
// Take note of the fact that the "cut" between the two halves of
|
|
// the tree runs down its left branch, since "split_node" itself
|
|
// belongs to the right tree.
|
|
Node* node = split_node;
|
|
bool left_branch = true;
|
|
|
|
// Work upwards through the tree, assigning each node either to
|
|
// the new left tree or the new right tree.
|
|
//
|
|
// This loop runs for O(log(n)) iterations.
|
|
// Each iteration calls join() once, taking time proportional
|
|
// to the difference in height between the intermediate trees.
|
|
// The total run time of all join() calls together is O(log(n)).
|
|
while (node) {
|
|
|
|
// Detach the current node from its parent.
|
|
// Remember to which branch of the parent it was attached.
|
|
Node* parent = node->parent_;
|
|
node->parent_ = nullptr;
|
|
bool parent_left_branch = true;
|
|
if (parent) {
|
|
parent_left_branch = (parent->left_child_ == node);
|
|
if (parent_left_branch) {
|
|
parent->left_child_ = nullptr;
|
|
} else {
|
|
assert(parent->right_child_ == node);
|
|
parent->right_child_ = nullptr;
|
|
}
|
|
}
|
|
|
|
// Join the current node and its remaining descendents either
|
|
// to the left tree or to the right tree.
|
|
if (left_branch) {
|
|
/*
|
|
* "node" belongs to the right tree.
|
|
* Join like this:
|
|
*
|
|
* (node) <--- new rtree
|
|
* / \
|
|
* (rtree) (node->right_child)
|
|
*/
|
|
assert(! node->left_child_);
|
|
rtree = join(rtree, node, node->right_child_);
|
|
} else {
|
|
/*
|
|
* "node" belongs to the left tree.
|
|
* Join like this:
|
|
*
|
|
* (node) <--- new ltree
|
|
* / \
|
|
* (node->left_child) (ltree)
|
|
*/
|
|
assert(! node->right_child_);
|
|
ltree = join(node->left_child_, node, ltree);
|
|
}
|
|
|
|
// Continue with the parent node.
|
|
node = parent;
|
|
left_branch = parent_left_branch;
|
|
}
|
|
|
|
// Done. All that remains of the old tree is the two new halves.
|
|
return std::make_tuple(ltree, rtree);
|
|
}
|
|
|
|
/** Return node height, or 0 if node == nullptr. */
|
|
static unsigned int get_node_height(const Node* node)
|
|
{
|
|
return node ? node->height_ : 0;
|
|
}
|
|
|
|
/**
|
|
* Repair the height and min-priority information of a node
|
|
* after modifying its children.
|
|
*
|
|
* After repairing a node, it is typically necessary to also repair
|
|
* its ancestors.
|
|
*/
|
|
static void repair_node(Node* node)
|
|
{
|
|
Node* lchild = node->left_child_;
|
|
Node* rchild = node->right_child_;
|
|
|
|
// Repair node height.
|
|
node->height_ = 1 + std::max(get_node_height(lchild),
|
|
get_node_height(rchild));
|
|
|
|
// Repair min-priority.
|
|
PrioType min_prio = node->prio_;
|
|
DataType min_data = node->data_;
|
|
for (Node* child : { lchild, rchild }) {
|
|
if (child && child->min_prio_ < min_prio) {
|
|
min_prio = child->min_prio_;
|
|
min_data = child->min_data_;
|
|
}
|
|
}
|
|
node->min_prio_ = min_prio;
|
|
node->min_data_ = min_data;
|
|
}
|
|
|
|
/** Rotate the subtree to the left and return the new root of the subtree. */
|
|
static Node* rotate_left(Node* node)
|
|
{
|
|
/*
|
|
* N C
|
|
* / \ / \
|
|
* A C ---> N D
|
|
* / \ / \
|
|
* B D A B
|
|
*/
|
|
Node* parent = node->parent_;
|
|
Node* new_top = node->right_child_;
|
|
assert(new_top);
|
|
|
|
Node* nb = new_top->left_child_;
|
|
node->right_child_ = nb;
|
|
if (nb) {
|
|
nb->parent_ = node;
|
|
}
|
|
|
|
new_top->left_child_ = node;
|
|
node->parent_ = new_top;
|
|
|
|
new_top->parent_ = parent;
|
|
|
|
if (parent) {
|
|
if (parent->left_child_ == node) {
|
|
parent->left_child_ = new_top;
|
|
} else {
|
|
assert(parent->right_child_ == node);
|
|
parent->right_child_ = new_top;
|
|
}
|
|
}
|
|
|
|
repair_node(node);
|
|
repair_node(new_top);
|
|
|
|
return new_top;
|
|
}
|
|
|
|
/** Rotate the subtree to the right and return the new root of the subtree. */
|
|
static Node* rotate_right(Node* node)
|
|
{
|
|
/*
|
|
* N B
|
|
* / \ / \
|
|
* B D ---> A N
|
|
* / \ / \
|
|
* A C C D
|
|
*/
|
|
Node* parent = node->parent_;
|
|
Node* new_top = node->left_child_;
|
|
assert(new_top);
|
|
|
|
Node* nc = new_top->right_child_;
|
|
node->left_child_ = nc;
|
|
if (nc) {
|
|
nc->parent_ = node;
|
|
}
|
|
|
|
new_top->right_child_ = node;
|
|
node->parent_ = new_top;
|
|
|
|
new_top->parent_ = parent;
|
|
|
|
if (parent) {
|
|
if (parent->left_child_ == node) {
|
|
parent->left_child_ = new_top;
|
|
} else {
|
|
assert(parent->right_child_ == node);
|
|
parent->right_child_ = new_top;
|
|
}
|
|
}
|
|
|
|
repair_node(node);
|
|
repair_node(new_top);
|
|
|
|
return new_top;
|
|
}
|
|
|
|
/**
|
|
* Join a left subtree, middle node and right subtree together.
|
|
*
|
|
* The left subtree is higher than the right subtree.
|
|
*/
|
|
static Node* join_right(Node* ltree, Node* node, Node* rtree)
|
|
{
|
|
assert(ltree);
|
|
unsigned int lh = ltree->height_;
|
|
unsigned int rh = get_node_height(rtree);
|
|
assert(lh > rh + 1);
|
|
|
|
/*
|
|
* Descend down the right spine of "ltree".
|
|
* Stop at a node with compatible height, then insert "node"
|
|
* and attach "rtree".
|
|
*
|
|
* ltree
|
|
* / \
|
|
* X
|
|
* / \
|
|
* X <-- cur
|
|
* / \
|
|
* node
|
|
* / \
|
|
* X rtree
|
|
*/
|
|
|
|
// Descend to a point with compatible height.
|
|
Node* cur = ltree;
|
|
while (cur->right_child_ && (cur->right_child_->height_ > rh + 1)) {
|
|
cur = cur->right_child_;
|
|
}
|
|
|
|
// Insert "node" and "rtree".
|
|
node->left_child_ = cur->right_child_;
|
|
node->right_child_ = rtree;
|
|
if (node->left_child_) {
|
|
node->left_child_->parent_ = node;
|
|
}
|
|
if (rtree) {
|
|
rtree->parent_ = node;
|
|
}
|
|
cur->right_child_ = node;
|
|
node->parent_ = cur;
|
|
|
|
// A double rotation may be necessary.
|
|
if ((! cur->left_child_) || (cur->left_child_->height_ <= rh)) {
|
|
node = rotate_right(node);
|
|
cur = rotate_left(cur);
|
|
} else {
|
|
repair_node(node);
|
|
repair_node(cur);
|
|
}
|
|
|
|
// Ascend from "cur" to the root of the tree; repair and rebalance.
|
|
while (cur->parent_) {
|
|
cur = cur->parent_;
|
|
assert(cur->left_child_);
|
|
assert(cur->right_child_);
|
|
|
|
if (cur->left_child_->height_ + 1 < cur->right_child_->height_) {
|
|
cur = rotate_left(cur);
|
|
} else {
|
|
repair_node(cur);
|
|
}
|
|
}
|
|
|
|
return cur;
|
|
}
|
|
|
|
/**
|
|
* Join a left subtree, middle node and right subtree together.
|
|
*
|
|
* The right subtree is higher than the left subtree.
|
|
*/
|
|
static Node* join_left(Node* ltree, Node* node, Node* rtree)
|
|
{
|
|
assert(rtree);
|
|
unsigned int lh = get_node_height(ltree);
|
|
unsigned int rh = rtree->height_;
|
|
assert(lh + 1 < rh);
|
|
|
|
/*
|
|
* Descend down the left spine of "rtree".
|
|
* Stop at a node with compatible height, then insert "node"
|
|
* and attach "ltree".
|
|
*
|
|
* rtree
|
|
* / \
|
|
* X
|
|
* / \
|
|
* cur --> X
|
|
* / \
|
|
* node
|
|
* / \
|
|
* ltree X
|
|
*/
|
|
|
|
// Descend to a point with compatible height.
|
|
Node* cur = rtree;
|
|
while (cur->left_child_ && (cur->left_child_->height_ > lh + 1)) {
|
|
cur = cur->left_child_;
|
|
}
|
|
|
|
// Insert "node" and "ltree".
|
|
node->left_child_ = ltree;
|
|
node->right_child_ = cur->left_child_;
|
|
if (ltree) {
|
|
ltree->parent_ = node;
|
|
}
|
|
if (node->right_child_) {
|
|
node->right_child_->parent_ = node;
|
|
}
|
|
cur->left_child_ = node;
|
|
node->parent_ = cur;
|
|
|
|
// A double rotation may be necessary.
|
|
if ((! cur->right_child_) || (cur->right_child_->height_ <= lh)) {
|
|
node = rotate_left(node);
|
|
cur = rotate_right(cur);
|
|
} else {
|
|
repair_node(node);
|
|
repair_node(cur);
|
|
}
|
|
|
|
// Ascend from "cur" to the root of the tree; repair and rebalance.
|
|
while (cur->parent_) {
|
|
cur = cur->parent_;
|
|
assert(cur->left_child_);
|
|
assert(cur->right_child_);
|
|
|
|
if (cur->left_child_->height_ > cur->right_child_->height_ + 1) {
|
|
cur = rotate_right(cur);
|
|
} else {
|
|
repair_node(cur);
|
|
}
|
|
}
|
|
|
|
return cur;
|
|
}
|
|
|
|
/**
|
|
* Join a left subtree, middle node and right subtree together.
|
|
*
|
|
* The index of all nodes in the left subtree must be less than
|
|
* the index of the middle node. The index of all nodes in
|
|
* the right subtree must be greater than the middle node.
|
|
*
|
|
* The left or right subtree may initially be a child of the middle
|
|
* node; such links will be broken as needed.
|
|
*
|
|
* The left and right subtrees must be consistent, semi-balanced trees.
|
|
* Height and priority of the middle node may initially be inconsistent;
|
|
* this function will repair it.
|
|
*
|
|
* @return Root node of the joined tree.
|
|
*/
|
|
static Node* join(Node* ltree, Node* node, Node* rtree)
|
|
{
|
|
unsigned int lh = get_node_height(ltree);
|
|
unsigned int rh = get_node_height(rtree);
|
|
|
|
if (lh > rh + 1) {
|
|
assert(ltree);
|
|
ltree->parent_ = nullptr;
|
|
return join_right(ltree, node, rtree);
|
|
} else if (lh + 1 < rh) {
|
|
assert(rtree);
|
|
rtree->parent_ = nullptr;
|
|
return join_left(ltree, node, rtree);
|
|
} else {
|
|
/*
|
|
* Subtree heights are compatible. Just join them.
|
|
*
|
|
* node
|
|
* / \
|
|
* ltree rtree
|
|
* / \ / \
|
|
*/
|
|
node->parent_ = nullptr;
|
|
node->left_child_ = ltree;
|
|
if (ltree) {
|
|
ltree->parent_ = node;
|
|
}
|
|
node->right_child_ = rtree;
|
|
if (rtree) {
|
|
rtree->parent_ = node;
|
|
}
|
|
repair_node(node);
|
|
return node;
|
|
}
|
|
}
|
|
|
|
/** Name of this queue. */
|
|
NameType name_;
|
|
|
|
/** Root node of the queue, or "nullptr" if the queue is empty. */
|
|
Node* tree_;
|
|
|
|
/** Left-most node that belongs to this queue. */
|
|
Node* first_node_;
|
|
|
|
/** Pointer to first sub-queue that got merged into this instance. */
|
|
ConcatenableQueue* first_subqueue_;
|
|
|
|
/** Linked list of sub-queues that were merged to build this queue. */
|
|
ConcatenableQueue* next_subqueue_;
|
|
};
|
|
|
|
|
|
/* **************************************************
|
|
* ** class PriorityQueue **
|
|
* ************************************************** */
|
|
|
|
/**
|
|
* Min-priority queue implemented as a binary heap.
|
|
*
|
|
* Elements in a heap have a priority and associated "data".
|
|
*
|
|
* The following operations can be done efficiently:
|
|
* - Insert an element into the queue.
|
|
* - Remove an element from the queue.
|
|
* - Change the priority of a given element.
|
|
* - Find the element with lowest priority in a given queue.
|
|
*/
|
|
template <typename PrioType,
|
|
typename DataType>
|
|
class PriorityQueue
|
|
{
|
|
public:
|
|
typedef unsigned int IndexType;
|
|
static constexpr IndexType INVALID_INDEX =
|
|
std::numeric_limits<IndexType>::max();
|
|
|
|
/**
|
|
* A Node instance represents an element in a PriorityQueue.
|
|
*
|
|
* A Node instance must remain valid while it is contained in a queue.
|
|
* The containing queue holds a pointer to the Node.
|
|
*
|
|
* A Node instance may be destructed if it is not contained in any queue.
|
|
* Alternatively, a Node instance may be destructed after its containing
|
|
* queue instance has been destructed.
|
|
*/
|
|
class Node
|
|
{
|
|
public:
|
|
/** Construct an invalid node, not contained in any queue. */
|
|
Node()
|
|
: index_(INVALID_INDEX)
|
|
{ }
|
|
|
|
// Prevent copying.
|
|
Node(const Node&) = delete;
|
|
Node& operator=(const Node&) = delete;
|
|
|
|
/** Return true if this node is contained in a queue. */
|
|
bool valid() const
|
|
{
|
|
return (index_ != INVALID_INDEX);
|
|
}
|
|
|
|
/**
|
|
* Return the priority of this node in the queue.
|
|
*
|
|
* The node must be contained in a queue.
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
PrioType prio() const
|
|
{
|
|
assert(index_ != INVALID_INDEX);
|
|
return prio_;
|
|
}
|
|
|
|
private:
|
|
IndexType index_;
|
|
PrioType prio_;
|
|
DataType data_;
|
|
|
|
friend class PriorityQueue;
|
|
};
|
|
|
|
/** Construct an empty queue. */
|
|
PriorityQueue()
|
|
{ }
|
|
|
|
// Prevent copying.
|
|
PriorityQueue(const PriorityQueue&) = delete;
|
|
PriorityQueue& operator=(const PriorityQueue&) = delete;
|
|
|
|
/**
|
|
* Remove all elements from the queue.
|
|
*
|
|
* This function takes time O(n).
|
|
*/
|
|
void clear()
|
|
{
|
|
for (Node* node : heap_) {
|
|
node->index_ = INVALID_INDEX;
|
|
}
|
|
heap_.clear();
|
|
}
|
|
|
|
/** Return true if the queue is empty. */
|
|
bool empty() const
|
|
{
|
|
return heap_.empty();
|
|
}
|
|
|
|
/**
|
|
* Return the minimum priority of any element in the queue.
|
|
*
|
|
* The queue must be non-empty.
|
|
* This function takes time O(1).
|
|
*/
|
|
PrioType min_prio() const
|
|
{
|
|
assert(! heap_.empty());
|
|
Node* top = heap_.front();
|
|
return top->prio_;
|
|
}
|
|
|
|
/**
|
|
* Return the element with minimum priority.
|
|
*
|
|
* The queue must be non-empty.
|
|
* This function takes time O(1).
|
|
*/
|
|
DataType min_elem() const
|
|
{
|
|
assert(! heap_.empty());
|
|
Node* top = heap_.front();
|
|
return top->data_;
|
|
}
|
|
|
|
/**
|
|
* Insert the given node into the queue with associated data.
|
|
*
|
|
* The node must not currently be contained in any queue.
|
|
* This function takes amortized time O(log(n)).
|
|
*/
|
|
void insert(Node* node, PrioType prio, const DataType& data)
|
|
{
|
|
assert(node->index_ == INVALID_INDEX);
|
|
|
|
node->index_ = heap_.size();
|
|
node->prio_ = prio;
|
|
node->data_ = data;
|
|
|
|
heap_.push_back(node);
|
|
sift_up(node->index_);
|
|
}
|
|
|
|
/**
|
|
* Update priority of an existing node.
|
|
*
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
void set_prio(Node* node, PrioType prio)
|
|
{
|
|
IndexType index = node->index_;
|
|
assert(index != INVALID_INDEX);
|
|
assert(heap_[index] == node);
|
|
|
|
PrioType prev_prio = node->prio_;
|
|
node->prio_ = prio;
|
|
|
|
if (prio < prev_prio) {
|
|
sift_up(index);
|
|
} else if (prio > prev_prio) {
|
|
sift_down(index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove the specified element from the queue.
|
|
*
|
|
* This function takes time O(log(n)).
|
|
*/
|
|
void remove(Node* node)
|
|
{
|
|
IndexType index = node->index_;
|
|
assert(index != INVALID_INDEX);
|
|
assert(heap_[index] == node);
|
|
|
|
node->index_ = INVALID_INDEX;
|
|
|
|
Node* move_node = heap_.back();
|
|
heap_.pop_back();
|
|
|
|
if (index < heap_.size()) {
|
|
heap_[index] = move_node;
|
|
move_node->index_ = index;
|
|
if (move_node->prio_ < node->prio_) {
|
|
sift_up(index);
|
|
} else if (move_node->prio_ > node->prio_) {
|
|
sift_down(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/** Repair the heap along an ascending path to the root. */
|
|
void sift_up(IndexType index)
|
|
{
|
|
Node* node = heap_[index];
|
|
PrioType prio = node->prio_;
|
|
|
|
while (index > 0) {
|
|
IndexType next_index = (index - 1) / 2;
|
|
Node* next_node = heap_[next_index];
|
|
if (next_node->prio_ <= prio) {
|
|
break;
|
|
}
|
|
heap_[index] = next_node;
|
|
next_node->index_ = index;
|
|
index = next_index;
|
|
}
|
|
|
|
node->index_ = index;
|
|
heap_[index] = node;
|
|
}
|
|
|
|
/** Repair the heap along a descending path. */
|
|
void sift_down(IndexType index)
|
|
{
|
|
Node* node = heap_[index];
|
|
PrioType prio = node->prio_;
|
|
|
|
IndexType num_elem = heap_.size();
|
|
|
|
while (index < num_elem / 2) {
|
|
IndexType next_index = 2 * index + 1;
|
|
Node* next_node = heap_[next_index];
|
|
|
|
if (next_index + 1 < num_elem) {
|
|
Node* tmp_node = heap_[next_index + 1];
|
|
if (tmp_node->prio_ <= next_node->prio_) {
|
|
++next_index;
|
|
next_node = tmp_node;
|
|
}
|
|
}
|
|
|
|
if (next_node->prio_ >= prio) {
|
|
break;
|
|
}
|
|
|
|
heap_[index] = next_node;
|
|
next_node->index_ = index;
|
|
|
|
index = next_index;
|
|
}
|
|
|
|
heap_[index] = node;
|
|
node->index_ = index;
|
|
}
|
|
|
|
/** Heap data structure. */
|
|
std::vector<Node*> heap_;
|
|
};
|